Сотрудники ФИЦ Институт цитологии и генетики прочитали серию лекций журналистам и студентам вузов Новосибирска. В первой части рассказывалось, как с помощью биоинформатики происходит моделирование процессов, происходящих в клетке в результате развития того или иного заболевания. И на основе анализа этих моделей, формируются потенциальные «мишени» для фармакалогического воздействия. А сегодня поговорим о следующем шаге – испытаниях in vitro (когда опыты проводятся «в пробирке» — вне живого организма).

– После того, как вы «сделали дизайн» лекарственного препарата в компьютере, вам необходимо проверить, как все это работает на практике, и при необходимости, доработать этот «дизайн», - с таких слов начал выступление ведущий научный сотрудник сектора геномных механизмов онтогенеза ФИЦ ИЦиГ СО РАН, к.б.н. Вениамин Фишман.

Итак, после первичного отбора по принципу «ключ-замок», в распоряжении исследователей оказалось несколько десятков вариантов активных веществ и соединений, которые (в соответствии с анализом модели заболевания) могут претендовать на роль лекарства. Далее, начинается проверка этого предположения на практике, которая требует наличия достаточного числа объектов для испытаний (иначе говоря, несколько сотен, а лучше – тысяч «подопытных кроликов»). Вот только где их взять в таком количестве (учитывая, что многие из проверяемы комбинаций могут оказаться на деле не только бесполезными, но и даже токсичными для организма).

Бывает и более сложная ситуация: когда у исследователей вообще нет адекватной модели возникновения и развития заболевания на клеточном уровне. Кстати, весьма распространенный случай.

Чтобы немного упростить тему, докладчик ограничил круг заболеваниями, которые ассоциированы с генами человека. И хотя связь заболеваний с генотипом установлена, во многих случаях остается неясным как они формируются, что запускает этот механизм и т.п. Соответственно, построить генную сеть (о которой говорилось ранее) невозможно.

Где же взять материал для исследований? Иногда (особенно – в случае онкологии) таким материалом становится полученный от пациента (например, во время операции) кусочек пораженной ткани. На нем в дальнейшем и проводятся различные эксперименты и т.п. Но этот метод применим с довольно ограниченным классом заболеваний.

Другой путь – смоделировать заболевание на лабораторном животном. Но это тоже весьма непросто (приходится выводить специальные генетические линии животных, способные страдать от человеческих недугов) и так же применимо далеко не со всеми заболеваниями.

Взять к примеру, аутизм – заболевание, которое затрагивает поведение человека, что невозможно изучать на кусочке ткани или лабораторной мыши. Схожие проблемы возникают с депрессией, нейродегенеративными расстройствами и т.д.

– Мы сейчас изучаем заболевание, при котором IQ у пациента останавливается на уровне 50, - рассказал Вениамин Фишман. – Это сильно отличается от нормального уровня для человека, пациент в лучшем случае может сам принимать пищу и ходить в туалет. Но мышь одинаково далека от IQ 50 и IQ 150, мы просто не можем смоделировать на ней такую ситуацию.

«Палочкой-выручалочкой» для ученых стали плюрипотентные (стволовые) клетки, прорыва в изучении которых удалось достичь только в нашем веке. Речь, прежде всего, о работах японского ученого Синъя Яманака: он научился превращать практически любые клеток организма в стволовые клетки. А они уже, при дифференцировке способны стать любыми клетками, из которых состоит тело взрослого человека.

В теории все выглядит следующим образом. Сначала из клеток пациента (чаще, клеток кожи) получают плюрипотентные стволовые клетки, их еще называют индуцированными. А затем – дифференцируют их, то есть, получают из них клетки нужного типа, на которых можно проводить любую исследовательскую работу. Причем, число таких объектов определяется скорее нуждами самого исследователя.

В будущем эту технологию рассматривают как источник необходимых донорских органов и тканей  из собственного материала пациента (регенеративная медицина), но пока эта технология до такого уровня не доработана. А вот получать образцы для проведения исследований и испытаний потенциальных лекарств ученые уже научились и вовсю пользуются новым методом.

Показательный пример – прошлогодние результаты по поиску лекарств от гиперхолестериемии. Это одно из самых распространенных генетических заболеваний, проявляется в аномально высоком уровне липидов (до 50 %) в крови пациента. Это ведет к тяжелейшим последствиям, прежде всего, для сердечно-сосудистой системы и довольно ранней смерти (даже при легких формах заболевания, большинство погибает в возрасте до сорока лет).

Также известно, что возникновение этой болезни во многих случаях вызвано мутацией генов, отвечающих за работу печени по захвату и метаболизму холестерина и других липидов из крови. Собственно, этот сбой в работе печени и является главной проблемой при гиперхолестериемии, в остальном организм пациентов работает нормально, а все иные симптом – вторичные, вызванные высоким уровнем липидов, а не влияющие на него.

– Лекарство, улучшающее работу этих ферментов в печени, искали как раз методом «полного перебора», - продолжил Вениамин Семенович. – Они имели достаточно времени и ресурсов для такой работы. Проблема была в объектах для опытов. Если вы имеете сотни тысяч каких-то соединений, которые вам надо протестировать, вам нужно соответствующее количество биологического материала. В данном случае – больные клетки, в которых данные ферменты неактивны. И на которых можно было бы смотреть: захватывают они липиды после введения очередного претендента на роль лекарства или нет.

Для решения этой задачи исследователи сделали относительно маленькую биопсию кожи нескольким пациентам, страдающим от этого заболевания. Затем – получили из нее плюрипотентные клетки этих людей, из которых после в чашке Петри вырастили клетки печени. Поскольку болезнь имеет генетические корни, клетки изначально были больными, не способными улавливать липиды. И стали, таким образом, отличным материалом для проведения «полного перебора» кандидатов на роль лекарства. Был найден ряд потенциально действенных соединений. И сегодня авторы исследования говорят о готовности приступить к клиническим испытаниям нового лекарства через пару лет.

Подобного рода работы сегодня проводят в лабораториях по всему миру, в том числе и сотрудники ФИЦ Институт цитологии и генетики СО РАН. Конечно, процесс создания лекарств – дело очень небыстрое и крайне затратное (мы еще коснемся этой темы в третьей части цикла). Но уже сейчас эксперты прогнозируют, что использование индуцированных стволовых клеток на начальных этапах исследований снимет многие барьеры и в ближайшие годы можно ожидать прорыва в лечении многих тяжелых заболеваний.

Конечно, важным моментом является доступность таких лекарств и способность российской промышленности производить их, но это уже, скорее, вопросы экономические и политические. А с научной точки зрения – у нас уже есть (хоть и в очень малом количестве) научные центры, проводящие такие исследования. В том числе, в новосибирском Академгородке.

Наталья Тимакова

Источники

"Вырастить" себе пациента
Академгородок (academcity.org), 19/03/2018

Похожие новости

  • 03/11/2017

    ​​В ИЦиГ СО РАН прошли переговоры о сотрудничестве с Академией сельскохозяйственных наук Китая

    1 ноября ФИЦ "Институт цитологии и генетики СО РАН" посетила делегация представителей китайской науки и бизнеса. Главная цель визита - заключение соглашения о сотрудничестве, в рамках которого должны быть созданы два совместных селекционно-семеноводческих центра, один в Новосибирске (на базе ФИЦ ИЦиГ СО РАН), второй - в Пекине (Институт овощеводства и цветоводства).
    361
  • 12/10/2016

    АлтГУ и ИЦиГ СО РАН развивают сотрудничество

    ​Алтайский государственный университет совместно с Федеральным исследовательским центром Институтом цитологии и генетики Сибирского отделения Российской академии наук приступает к реализации научно-образовательного проекта по селекции и семеноводству.
    1362
  • 29/12/2017

    Биолог, психолог и востоковед рассказали о символе 2018 года

    Какая порода самая древняя? Почему собаки могут есть овсянку? Почему в Китае слагали легенды об этих животных и зачем вообще люди заводят собак? Ответы на эти вопросы ищите в материале ниже. Собака — родственник человека.
    445
  • 31/03/2017

    Академик Николай Колчанов рассказал о развитии Селекционного центра

    30 марта на территории новосибирского Академпарка прошло очередное заседание членов Совета «Сибирской биотехнологической инициативы» (СБИ). СБИ – это программа, объединяющая объекты инновационной инфраструктуры и органы власти Сибирского федерального округа, в целях развития биотехнологий, медицины и фармацевтики.
    855
  • 14/11/2016

    Академику Владимиру Солошенко исполнилось 70 лет

    ​Солошенко Владимир Андреевич Солошенко родился 12 ноября 1946 году в г. Черепаново Новосибирской области. Окончил Новосибирский сельскохозяйственный институт в 1970 году по специальности зоотехния. В 1970-1972 г.
    992
  • 09/11/2017

    Научная молодежь: разработки, амбиции, планы

    ​В ТАСС (Новосибирск) накануне Всемирного дня науки состоится круглый стол, посвященный открытиям молодых ученых, их участию в крупных научных проектах. Молодые представители СО РАН - Института горного дела, Института химической биологии и фундаментальной медицины, Института цитологии и генетики, а также действующие и новые резиденты Академпарка, расскажут о ряде проектов, над которыми ведется работа в этом году.
    583
  • 05/07/2017

    В новосибирском Академгородке прошла конференция по высокопроизводительному секвенированию в геномике

    ​​Ученые из Института химической биологии и фундаментальной медицины СО РАН представили новые методы, использующие NGS секвенирование, уникальные для нашей страны, на II Всероссийской конференции "Высокопроизводительное секвенирование в геномике", прошедшей в новосибирском Академгородке.
    844
  • 13/04/2016

    В ИЦИГ СО РАН создают базу данных для обработки научной информации

    ​В Федеральном исследовательском центре «Институт цитологии и генетики СО РАН» разрабатывают универсальную систему для поддержки селекционно-генетических экспериментов, пока что тестируя ее на проектах, связанных с изучением пшеницы.
    1199
  • 14/11/2017

    Юбилей академика Михаила Ивановича Воеводы

    ​Михаил Иванович Воевода родился 14 ноября 1957 года в Новосибирске. После окончания в 1982 году Новосибирского Государственного Медицинского Университета обучался в клинической ординатуре по специальности «внутренние болезни».
    544
  • 10/01/2017

    Академику Николаю Колчанову исполнилось 70 лет

    ​Николай Александрович Колчанов родился 9 января 1947 года в с. Кондрашино Омской области. В 1971 году окончил Новосибирский государственный университет. С 1974 года работает в Институте цитологии и генетики СО РАН, а с 2008 года - директор этого института.
    1087