Ученые из Федерального исследовательского центра Институт прикладной физики РАН совместно с коллегами из Нижегородского государственного университета нашли условия, при которых лавинообразное рождение электронов и позитронов в фокусе сверхмощного лазерного импульса приводит к возникновению плазмы рекордно высокой плотности.

Результаты исследования опубликованы в Scientific Reports. Работа проводилась при финансовой поддержке РНФ и Минобрнауки России.

В достаточно сильном электрическом ил магнитном поле гамма-фотон может распасться на две частицы - электрон и позитрон. До сих пор этот эффект в лабораторных условиях наблюдался в основном при пропускании гамма-излучения сквозь кристаллы, в которых поля необходимой величины существуют вблизи атомных ядер. Однако уже в ближайшие годы ученые могут получить новый инструмент для изучения этого явления - лазеры, способные генерировать короткие импульсы мощностью более 10 петаватт (1 петаватт = 10 15 ватт = 1 квадриллион ватт).

Ожидается, что в фокусе лазерной установки при этом будут наблюдаться целые электрон-позитронные лавины: рожденные в результате распада гамма - фотона частицы будут ускоряться лазерным полем и излучать гамма - фотоны, которые в свою очередь будут рождать новые электроны и позитроны. В результате за короткое время количество частиц должно вырасти до огромных значений, что приведет к образованию сверхплотной электрон - позитронной плазмы.

Существуют ограничения на плотность плазмы, которую можно получить подобным образом. В некоторый момент лазерное излучение не сможет проникать в слишком плотную плазму, и рост лавины остановится. Существовавшие оценки говорили, что концентрация частиц в фокусе лазера будет немногим больше 10 24 частиц в кубическом сантиметре. Для сравнения приблизительно столько же электронов содержится в тяжелых металлах, например, платине или золоте, но коллектив авторов из ФИЦ Институт прикладной физики РАН и Нижегородского государственного университета показал, что при определенных условиях это число может быть в десятки раз больше.

Для этого они провели масштабное численное моделирование процесса развития электрон-позитронной лавины в сильно сфокусированном лазерном поле. "Основной сложностью в исследовании было то, что основные результаты могли быть получены только из трехмерного моделирования, которое является очень ресурсозатратным, - рассказал один из авторов работы, младший научный сотрудник ФИЦ Институт прикладной физики РАН Евгений Ефименко. - Помимо потребности в вычислительных ресурсах, подобные задачи требуют надежных вычислительных кодов с продвинутыми алгоритмами, в данном конкретном случае, это алгоритмы по моделированию электрон-позитронных лавин. В нашей работе мы использовали код PICADOR, разрабатываемый совместно сотрудниками Федерального исследовательского центра Института прикладной физики РАН и Нижегородского государственного университета".

В моделировании ученые исследовали особую конфигурацию лазерного поля, которая носит название дипольной фокусировки. Лазерное излучение в этом случае облучает точку фокуса как бы со всех сторон. Ранее было показано, что такая конфигурация является оптимальной с точки зрения мощности излучения, необходимой для наблюдения лавины.

"Мы представляем принципиально новый объект исследования - стационарные или квазистационарные состояния плотной электрон-позитронной плазмы, эти стационарные состояния имеют очень интересную и неожиданную структуру. В то время как лазерное поле в форме дипольной волны имеет аксиальную симметрию, распределение электрон-позитронной плазмы в результате развития токовой неустойчивости вырождается в два тонких слоя, ориентированных под случайным углом. Толщина слоев и концентрация частиц в этих слоях, по-видимому, ограничивается только случайностью процесса излучения, что приводит к экстремальным значениям плотности плазмы. При полном числе частиц порядка 10 11 плотность превосходит значение 10 26 частиц в кубическом сантиметре, и ограничивалась в нашем случае только разрешением численного моделирования" - пояснил Евгений Ефименко.

На данный момент лазерных систем, способных реализовать предложенный авторами эксперимент не существует, однако их возможное строительство активно обсуждается. В частности, Правительство Российской Федерации поддержало проект XCELS по созданию 12-канальной лазерной системы общей мощность 100 петаватт. Этот проект стал одним из шести, которые планируется реализовать в рамках программы поддержки международных научных мегапроектов, однако его реализация пока не началась.

Результаты исследований могут приблизить к пониманию процессов, происходящих в астрофизических объектах, а также могут помочь изучить процессы рождения элементарных частиц. В дальнейшем авторы планируют изучить развитие электрон-позитронных лавин в аналогичной конфигурации, но при более высоких мощностях.

Источники

Ученые предложили способ получения электрон-позитронной плазмы экстремально высокой плотности
Федеральное агентство научных организаций (fano.gov.ru), 05/03/2018

Похожие новости

  • 15/01/2018

    Российские ученые выяснили, как способ обработки полипропилена влияет на механические свойства конечного изделия

    ​Коллектив учёных, в том числе из Института синтетических полимерных материалов РАН и МФТИ, выяснил, как «правильность» молекул полипропилена и способ обработки влияют на механические свойства конечного изделия.
    418
  • 09/01/2018

    Геофизики исследовали космические хоры в радиационном поясе Земли

    ​Ученые из Полярного геофизического института исследуют низкочастотные сигналы, которые способны влиять на радиационный пояс Земли. Прогноз поведения пояса позволит минимизировать вред от космической радиации для спутников и космонавтов.
    486
  • 27/08/2018

    Электрон может проявлять волновые свойства даже при высоких энергиях

    ​Российские ученые выяснили, что так называемый закрученный электрон может вести себя как волна даже при высоких энергиях, в то время как волновые свойства обычных электронов теряются при ускорении. Проверить полученные результаты ученые планируют с помощью экспериментов на современных коллайдерах.
    120
  • 13/08/2018

    Профессор Вячеслав Сторчак: необходимо интегрировать новые направления с кремниевыми технологиями

    Информационные технологии развиваются столь быстрыми темпами, что человечество не всегда успевает на эти изменения реагировать. Все это - во многом благодаря новым материалам с принципиально новыми свойствами.
    187
  • 23/07/2018

    Российские физики создали суперлюминесцентный световод для космических аппаратов

    Оптоволокно с добавкой висмута может стать мощным суперлюминесцентным источником излучения для инструментов и приборов, работающих в космосе.   Исследователи из Научного центра волоконной оптики (НЦВО) РАН и Института химии высокочистых веществ им.
    148
  • 10/09/2018

    Ученые реконструировали 3D-модель еды по двумерному изображению ее структуры

    ​Ученые показали, что на основе двумерного изображения продуктов питания можно создать трехмерную модель их внутреннего строения. Опираясь на нее, можно предсказать физические свойства пищевого продукта и смоделировать процессы, происходящие внутри него.
    114
  • 25/05/2018

    Ученые обнаружили новый тип полуметаллов

    ​Российские ученые впервые описали топологическую электронную структуру моносилицида кобальта и обнаружили, что материал относится к новому типу полуметаллов. Результаты исследования описаны в журнале Journal of Physics: Condensed Matter.
    261
  • 17/08/2018

    Двухслойная мембрана позволит получить особо чистый кислород

    ​Российские ученые разработали новую двухслойную мембрану для получения особо чистого кислорода из воздуха. Ее можно использовать в микро- и наноэлектронике, фармацевтической промышленности и биотехнологии.
    166
  • 15/08/2018

    Описаны механизмы увеличения энергии электронов в химических реакциях

    ​Ученые описали, как можно увеличить энергию электронов в ходе химических реакций. Принципы этого процесса используются в химическом синтезе, однако детально их ранее не исследовали. Работа выполнена при поддержке гранта РНФ и опубликована в журнале Angewandte Chemie.
    148
  • 17/03/2017

    Сибирские физики создадут точнейшие атомные часы

    Ученые из Института лазерной физики Сибирского отделения Российской академии наук, Новосибирского государственного университета и из Новосибирского государственного технического университета разработали сверхстабильный лазер для атомных часов, который позволит российским физикам создать устройства для измерения времени, не уступающие в точности западным аналогам, говорится в статье, опубликованной в Journal of Physics: Conf.
    1411