​​Шарики вместо метеоритов, танки из военного училища и шедевр японского приборостроения для «выпечки» новых материалов. О том, как ученые Института гидродинамики им. М.А. Лаврентьева СО РАН создают новые материалы для авиации, космоса и повседневной жизни. 

«Стрелочный завод обратился к нам (Институт гидродинамики) с просьбой помочь осуществить упрочнение взрывом подвижной части стрелки. Сотрудники института А. А. Дерибас, Ю. А. Тришин, Е. И. Биченков быстро провели нужный опыт. Обработанная взрывом стрелка была поставлена на путь, и через полгода стало ясно, что она может служить в два раза дольше, чем обычно. При желании за полгода-год можно было наладить упрочнение всех выпускаемых заводом стрелок, и тем самым дать солидную прибыль. К сожалению, из-за бюрократической волокиты широкое внедрение затянулось: чтобы запустить на заводе цех по упрочнению взрывом, понадобилось почти 15 лет!».

Из воспоминаний академика М. А. Лаврентьева. 

Идея создания новых материалов и улучшение свойств уже известных занимала еще академика Михаила Алексеевича Лаврентьева​. Это было в те времена, когда ученые Института гидродинамики СО РАН (ИГиЛ СО РАН) с помощью направленного взрыва под Алма-Атой создали грандиозную противоселевую плотину; разогнали небольшие металлические шарики до космических скоростей, чтобы изучить последствия встречи метеоритов и космических кораблей; научились тушить пожары с помощью вихревых колец

Благодаря просьбе завода упрочнить стрелочные переводы, ученые ИГиЛ СО РАН обнаружили, что, если взрывом бросать на стрелку металлическую пластину, она, зачастую, к ней приваривается. Так открыли сварку взрывом. В это же время подобными экспериментами занимались в США, ФРГ, Японии, но по количеству различных применений взрыва для сварки Россия занимала практически лидирующее положение в мире. Уже после ухода из жизни М. А. Лаврентьева специалисты Института гидродинамики первыми в мире опубликовали работы об образовании в продуктах взрыва ультрадисперсных частиц алмаза.

Слева направо: к.ф.-м.н. Вячеслав Иосифович Мали, мл.н.с. Максим Александрович Есиков, к.х.н. Дина Владимировна Дудина, к.ф.-м.н. Александр Георгиевич Анисимов 

Слева направо: к.ф.-м.н. Вячеслав Иосифович Мали, мл.н.с. Максим Александрович Есиков, к.х.н. Дина Владимировна Дудина, к.ф.-м.н. Александр Георгиевич Анисимов

Сегодня ученые Института гидродинамики продолжают работать над созданием новых материалов – теперь для увеличения их прочности, эрозионной стойкости, жаропрочности используют не только взрыв, но и новые технологии, например, Spark Plasma Sintering (SPS) – метод электроискрового спекания. Данная тематика возникла исходя из чисто научного интереса, а в настоящее время благодаря успешным результатам прочно закрепилась за ИГиЛ СО РАН.

Корреспондент журнала «НАУКА из первых рук» встретился с членами «партизанского», никак структурно не оформленного, подразделения института, в который входят лауреат премии Совета Министров СССР за цикл исследований, разработку и внедрение технологических процессов сварки взрывом, к.ф.-м.н. Вячеслав Иосифович Мали, к.ф.-м.н. Александр Георгиевич Анисимов, Максим Александрович Есиков – сотрудники лаборатории физики высоких плотностей энергии и старший научный сотрудник лаборатории детонационных течений к.х.н. Дина Владимировна Дудина.

Ведущий научный сотрудник лаборатории физики высоких плотностей энергии ИГиЛ СО РАН, к.ф.-м.н. В.И. Мали 

Ведущий научный сотрудник лаборатории физики высоких плотностей энергии ИГиЛ СО РАН, к.ф.-м.н. В.И. Мали

«Материаловедение как научное направление сформировалось на стыке наук, поэтому оно не вписывается в специфику какого-либо одного института Сибирского отделения. И в Институте гидродинамики никогда не было отдельной лаборатории, в которой разными методами с использованием взрыва и электрического поля создавались и исследовались бы новые материалы. Мы взялись развивать эту тематику по собственному желанию, просто потому что нам было интересно, – рассказывает В. И. Мали – у меня большой опыт работ по сварке взрывом металлов и компактированию взрывом порошков. С Сашей Анисимовым в 2010 г. мы занялись темой электроимпульсного спекания порошковых наноструктурных композитов. Тогда еще без японской установки провели на имеющемся оборудовании опыты с порошками меди и диборида титана. При помощи метода электроимпульсного спекания в одиночных разрядах получили пористые наноструктурные композиты, состоящие из кристаллов диборида титана в медной матрице, практически совпадающие с размером исходных кристаллов диборида титана в медном порошке. И несмотря на пористость полученных нанокомпозитных электродов, их эрозионная стойкость оказалась в четыре раза выше эрозионной стойкости монолитной меди».

Старший научный сотрудник лаборатории физики высоких плотностей энергии ИГиЛ СО РАН, к.ф.-м.н. А.Г. Анисимов 

Старший научный сотрудник лаборатории физики высоких плотностей энергии ИГиЛ СО РАН, к.ф.-м.н. А.Г. Анисимов

«Получив такие обнадеживающие результаты, приобрели японскую установку Labox 1575, Sinter Land Inc. – она тоже спекает порошки, но немного другим способом – методом электроискрового спекания, – добавляет А. Г. Анисимов, – механизм этих двух методов схож: электрические импульсы, проходя через образец, быстро его нагревают, при этом сохраняют микроструктурные параметры. В точках контакта между частицами может происходить локальный разогрев. Разница только в силе тока, напряжении и времени нагрева. Установка была нужна, чтобы создавать из порошков образцы со 100% плотностью и проводить их испытания».

За прошедшие шесть лет ученые создали ряд интересных нанокомпозитных материалов, свойства которых позволяют использовать их, например, в космосе.

В.И. Мали: «Все материалы, которые используются в авиации и космосе, должны быть жаропрочными и огнестойкими, и сохранять свои свойства в открытом огне. Существующие конструкционные материалы, способные работать при высоких температурах в окислительной среде, ограничены материалами на основе карбида кремния и нитрида кремния, оксидной керамикой и углерод-углеродными композитами с термической защитой. Такие материалы выдерживают температуру до 1600°C.

Перед нами стояла задача создать более термостойкий материал. Используя нашу установку, синтезировали керамику на основе боридов циркония и гафния – получили ультравысокотемпературный керамический материал, устойчивый в окислительной среде при температурах не ниже 2100°C. Теперь этот перспективный материал испытывают в Центральном аэродинамическом институте им. Н. Е. Жуковского (ЦАГИ).

Многослойный композит, полученный комбинированным методом сварки взрывом и электроискрового спекания (SPS). Слои снизу соответственно: никель-медь-тантал-титан сварены взрывом. Сверху титановый сплав приварен к титановой стороне многослойки методом SPS. Изображение предоставлено к.ф.-м.н. В.И. Мали 

Многослойный композит, полученный комбинированным методом сварки взрывом и электроискрового спекания (SPS). Слои снизу соответственно: никель-медь-тантал-титан сварены взрывом. Сверху титановый сплав приварен к титановой стороне многослойки методом SPS. Изображение предоставлено к.ф.-м.н. В.И. Мали

Хороших результатов добились в создании керамики с открытой пористостью. Из порошка «таркосил», полученного из диоксида кремния SiO2 Институтом теоретической и прикладной механики cовместно с Институтом ядерной физики СО РАН, разработан материал, пригодный в качестве фильтров для промышленного разделения газов. Метод SPS и здесь показал свою эффективность – за относительно малое время мы получали образцы керамики с заранее заданными и контролируемыми пористостью и размером пор.

Микроструктура компакта никель-алмаз, полученного методом электроискрового спекания при 900 °С. Изображение предоставлено к.ф.-м.н. В.И. Мали 

Микроструктура компакта никель-алмаз, полученного методом электроискрового спекания при 900 °С. Изображение предоставлено к.ф.-м.н. В.И. Мали

Еще один интересный материал с повышенной механической прочностью и сохраненной электропроводностью не менее 75% от электропроводности чистой меди мы получили из меди и диборида титана. Этот композитный материал можно использовать для электроэрозионных и электроконтактных изделий.

Совершенно новый класс металлов, промежуточный между чистым металлом и керамикой, – интерметаллиды. При нормальной температуре они хрупкие, но при нагревании становятся пластичными и при этом не теряют прочность. Интерметаллиды легкие и способны выдерживать высокие температуры, более того, повышение температуры улучшает их свойства. Монолитные образцы интерметаллидов с плотностью около 99% можно спекать прямо в нашей установке».

По словам В. И. Мали на сегодняшний день работы «партизанского отряда» уже входят в план Института гидродинамики. В коллективе, собравшемся «по любви» к общему делу, работают и молодые ученые – Дина Дудина и Максим Есиков.

Старший научный сотрудник лаборатории детонационных течений, к.х.н. Д. В. Дудина 

Старший научный сотрудник лаборатории детонационных течений, к.х.н. Д. В. Дудина

Старший научный сотрудник Д. В. Дудина: «Метод спекания электрическим током известен давно – это направление развивается во всем мире. Я познакомилась с этим методом, когда работала в Южной Корее, мне понравилась тема, в ней много непонятного, есть где развернуться научной мысли – узнать, что происходит на контактах между частицами, как влияют параметры спекания на процесс. SPS-установки производят в Японии, Америке, Германии, количество работ по тематике электроискрового спекания растет лавинообразно, а в Сибири – только две установки, у нас и в Томске».

В. И. Мали: «Мы давно и плодотворно сотрудничаем с Новосибирским государственным техническим университетом, где на хорошей приборной базе проводят комплексное исследование новых материалов. Оттуда к нам пришел Максим Есиков».

Младший научный сотрудник М. А. Есиков: «В Институте гидродинамики я проходил производственную практику, потом выполнил дипломную работу, так здесь и остался. Электроискровое, электроимпульсное спекание – это продолжение взрывной тематики, с которой я начинал работать. Нельзя сказать, что какой-то метод лучше или хуже – выбор метода определяется задачей. Есть работы, в которых мы комбинируем сварку взрывом и спекание на установке.

Методом SPS можно создать элементы в форме шестигранника из карбида бора или карбида кремния, из которых в дальнейшем собирают композитные керамические бронепанели, использующиеся в бронежилетах, в военной и специальной технике 

Методом SPS можно создать элементы в форме шестигранника из карбида бора или карбида кремния, из которых в дальнейшем собирают композитные керамические бронепанели, использующиеся в бронежилетах, в военной и специальной технике

К примеру, существует задача в самолетостроении – заменить титановый сплав более легким материалом. Добавив в титан алюминий, мы получаем жаропрочный интерметаллид титан-алюминий, он легче. А чтобы сделать его более прочным, комбинируем сварку взрывом и последующее спекание на установке SPS. Получаем слоистый металл-интерметаллидный композит».

Если установка для спекания порошков Labox 1575 занимает целую комнату, то взрывная камера – стальной шар правильной формы 10,5 метра в диаметре, с толщиной стенки 24 мм и весом 200 тонн – три этажа отдельно стоящего здания. Сваркой и компактированием порошков взрывом заниматься могут не все – для такой работы у научного сотрудника должно быть удостоверение взрывника.

Взрывную камеру готовят к работе, 1974 г.Фото из архива ИГиЛ СО РАН 

Взрывную камеру готовят к работе, 1974 г. Фото из архива ИГиЛ СО РАН

«Расскажу, как этот шар устанавливали – это отдельная история, – рассказывает ведущий инженер-технолог Иван Алексеевич Стадниченко, – тут недалеко была площадка, заросла теперь, там монтировали шар. Потом вырыли котлован, заполнили водой (зимой было дело), закатали к нему горку ледяную. Потом приехали два танка из Военного училища (НВВКУ) и столкнули конструкцию по горке в резервуар с водой, в которой шар нужным образом ориентировали. Потом откачали воду, а вокруг построили здание. Строительство, установка обошлись Сибирскому отделению в 900 тысяч. Советских рублей.

Загадка про дятла. Автор Иван Алексеевич Стадниченко.Чем предположительно сделано это отверстие? Плазменной струей, кумулятивным зарядом или ломом? 

Загадка про дятла. Автор Иван Алексеевич Стадниченко.Чем предположительно сделано это отверстие? Плазменной струей, кумулятивным зарядом или ломом?

Взрывную камеру ученые используют для ускорения компактных частиц до скоростей, близких к космическим. Еще во времена первых полетов человека в космос, в Институте гидродинамики моделировали удары микрометеоритов по элементам космических аппаратов с помощью взрывных ускорителей частиц. За время существования взрывной камеры в ней проведено более шести тысяч взрывов. В среднем происходит один подрыв в два дня. Подготовка к взрыву может занимать несколько недель. Используем только безопасные и безвредные детонаторы. Видимая оболочка внутри камеры – противоосколочная защита (10 мм стали), за ней ~150 мм бетона, в том числе и с радиационной защитой – строили-то в Советском союзе, когда была угроза ядерного взрыва. Так, чтобы в случае опасности наш шарик мог стать бункером».

Младший научный сотрудник лаборатории физики высоких плотностей энергии М. А. Есиков и ведущий инженер-технолог И.А. Стадниченко внутри взрывной камеры 

Младший научный сотрудник лаборатории физики высоких плотностей энергии М. А. Есиков и ведущий инженер-технолог И.А. Стадниченко внутри взрывной камеры

На установке Labox 1575 исследования процессов получения материалов в условиях импульсного электрического поля ведутся ежедневно. Появляется все больше заказчиков, материаловедение интересует всех – новые разработки требуют новых материалов. Группа В. И. Мали сотрудничает с Институтом химии твердого тела и механохимии, Институтом лазерной физики, Институтом катализа им. Г. К. Борескова, Институтом неорганической химии им. А. В. Николаева, Институтом ядерной физики им. Г. И. Будкера СО РАН и Институтом теоретической и прикладной механики им. им. С. А. Христиановича.

В. И. Мали: «На Западе материаловедение развивается быстрыми темпами, новые разработки сразу внедряются. У нас в стране мало кто готов подхватывать только идеи. Хотя мы, создавая материалы, думаем не только об их уникальных свойствах, но и о том, где они могут пригодиться. У нас не проводится стандартизация и достаточная технологическая проработка получения новых материалов. Поэтому следом должны идти те, кто будет непосредственно внедрять. Но идти некому, отраслевые институты, которые занимались этим в советское время, почти все исчезли. Внедрение не является задачей РАН, и в академических институтах этим не занимаются. В результате имеем известный парадокс, когда опубликованными российскими идеями пользуется весь мир, а в самой России механизмы доведения идей до промышленного производства пробуксовывают. Особенно сильно это проявилось с взрывными методами обработки материалов, которые трудно совмещаются с традиционными производственными процессами. Есть надежда, что методу SPS повезет с внедрением больше».

Подготовила Татьяна Морозова

Редакция журнала "Наука из первых рук" благодарит Наталью Бородину за идею публикации и предоставленные материалы

Источники

Спечь или взорвать?
Наука из первых рук, 03/06/2016

Похожие новости

  • 28/01/2016

    Программа празднования Дней российской науки в СО РАН

    ​​8 февраля — День российской науки. Во всех научных центрах Сибирского отделения РАН с 8 по 12 февраля состоятся праздничные мероприятия. В Дни открытых дверей в институтах можно будет посетить научные лаборатории, увидеть уникальное оборудование и приборы, послушать лекции по актуальным вопросам науки, побеседовать с ведущими учеными, посмотреть фильмы о науке.
    3998
  • 06/07/2017

    РНФ подвел итоги первых конкурсов президентской программы

    По результатам первых трех конкурсов Президентской программы поддержано 504 инициативных проекта молодых ученых размером 1,5-2 миллиона рублей ежегодно, 239 молодежных научных групп с финансированием в 3-5 миллионов рублей и 31 лаборатория с финансированием со стороны Фонда в 30 миллионов рублей и софинансированием бизнеса или учредителя в 2 миллиона.
    4754
  • 04/04/2018

    Подведены итоги оценки результативности научных организаций

    454 организации разделили по трем категориям. Чем отличились сельскохозяйственные институты, чему Минздраву стоит поучиться у ФАНО и в каком регионе больше всего институтов из третьей категории, читайте в материале Indicator.
    3539
  • 05/05/2016

    Сибирские ученые - победители конкурса 2016 года по государственной поддержке ведущих научных школ

    ​Совет по грантам Президента РФ для государственной поддержки молодых российских ученых и по государственной поддержке ведущих научных школ Российской Федерации отметил сибирских ученых. Математика и механика.
    3307
  • 20/06/2017

    Международная выставка «НТИ ЭКСПО» в Новосибирске

    ​​​Уникальная международная выставка достижений технологического развития "НТИ ЭКСПО" пройдет в рамках V Международного форума технологического развития "Технопром-2017" 20-22 июня в Новосибирске при поддержке правительства РФ, коллегии ВПК, Минпромторга России, Минэкономразвития России, МИДа РФ, правительства Новосибирской области.
    2929
  • 15/12/2016

    2,4 га будут переданы сотрудникам 30-ти институтов Сибирского отделения РАН

    ​В Новосибирской области на территории Академгородка, одного из важнейших научных центров России, к 2021 году будут построены три многоквартирных жилых дома для 311 работников 30 институтов Сибирского отделения Российской академии наук, являющихся участниками жилищно-строительного кооператива "Бозон".
    2588
  • 17/10/2019

    Кремниевый детектор в 5 раз улучшил качество «картинки» на станции синхротронного излучения

    Ученые Института ядерной физики СО РАН им. Г.И. Будкера (ИЯФ СО РАН) и НГТУ НЭТИ разработали и изготовили детектор рентгеновского излучения на основе кремниевого микрополоскового сенсора для синхротронной станции «Плазма» на накопителе ВЭПП-4.
    284
  • 28/02/2019

    СКИФ обретает очертания

    В Новосибирске полным ходом идет проектирование уникального синхротрона четвертого поколения, который должны построить в рамках реализации проекта «Академгородок 2.0» к 2024 году. Ученые разработали эскиз первых шести пользовательских станций СКИФаНапомним, центр коллективного пользования СКИФ будет включать в себя, помимо собственно источника фотонов, пользовательское оборудование экспериментальных станций и лабораторного комплекса.
    545
  • 30/01/2015

    Программа празднования Дней российской науки

    Сибирское отделение РАН и научные организации, подведомственные ФАНО России, со 2 по 8 февраля проводят праздничные мероприятия, посвященные Дню российской науки. В Дни открытых дверей в институтах будут показаны научные лаборатории, уникальное оборудование и приборы, пройдут лекции по актуальным вопросам науки, беседы с ведущими учеными, фильмы о науке.
    2037
  • 19/05/2017

    Энергия молодости как движущая сила науки

    Так же, как российское могущество прирастает Сибирью, могущество Сибирского отделения прирастает молодыми учеными. Они приходят в науку разными путями, но затем все эти тропинки сливаются в одну дорогу, ведущую в будущее.
    1980