Благодаря методу синтетической частоты, созданному сотрудниками Института лазерной физики СО РАН совместно с Национальным институтом метрологии Германии и Ганноверским университетом им. Лейбница, удастся значительно уменьшить погрешность атомных часов при нормальных условиях окружающей среды. Статья о работе была опубликована в New Journal of Physics
Атомные часы 
Измерение времени — одна из древнейших проблем, решение которой продолжается на протяжении всей истории человечества. С развитием науки и техники задачи людей менялись, и если раньше применение часов сводилось в основном к разделению суток на интервалы, то сегодня они необходимы для работы любого электронного оборудования. Во многих устройствах до сих пор используются кварцевые генераторы, позволяющие достигать нестабильности на уровне 10-10, однако для актуальных потребностей этого уже недостаточно. Улучшить показатели точности на несколько порядков можно, применяя атомные стандарты частоты.  

 
По словам главного научного сотрудника Института лазерной физики СО РАН доктора физико-математических наук Валерия Ивановича Юдина, в современном понимании часы представляют собой стабилизированную синусоиду, сопровождаемую счетчиком периодов колебаний. Их погрешность зависит от влияния множества факторов, таких как гравитационные, магнитные, электрические поля Земли и так далее, на изменение частоты колебаний синусоиды. Атом с точки зрения квантовой механики — это микроскопический объект, для которого характерны переходы из одних состояний в другие, происходящие с частотой во много раз превышающей частоты колебаний используемых в кварцевых часах кристаллов. Для последних максимальные показатели составляют около 100 мегагерц, а в случае с атомными переходами счет может идти на десятки и сотни терагерц, в результате чего они меньше подвержены внешнему влиянию, чем колебательные системы кварцевых измерителей времени. 

 
«Самые точные атомные часы — оптические. Их нестабильность достигает фантастической цифры, 10-18, которая просто недостижима для микроволновых атомных часов. К примеру, если бы мы начали отсчет времени с момента образования Вселенной, то за 14 миллиардов лет ошибка бы не превысила и одной секунды. В таких устройствах используется лазер, способный выдавать синусоиду, совершающую до 10 в 15 степени колебаний в секунду», — отмечает Валерий Юдин. 

 
Сегодня атомные часы активно используются для работы систем GPS и ГЛОНАСС, передачи больших массивов информации на значительные расстояния, в военной и космической отраслях. Однако, помимо технической сферы, существует фундаментальная область применения высокоточных часов.  

 
«Многие наверняка слышали о существовании физических констант, которые, согласно некоторым современным теориям, по мере развития Вселенной могут меняться, — рассказывает Валерий Иванович. — Чтобы это произошло, должно пройти несколько миллиардов лет, поэтому отследить данный процесс без специальных приборов просто невозможно. Атомные часы позволяют значительно сократить время эксперимента. Проведя измерения в начале и в конце года, мы поймем, что произошло с частотами атомных переходов за выбранный период и сможем увидеть изменение констант». ​​

 
Важнейшим условием достижения минимальной погрешности атомных часов на уровне 10-19 в обычных условиях является подавление так называемого теплового сдвига. Именно эту задачу поставили перед собой ученые в новом исследовании. Как отмечает Валерий Юдин, любой нагретый макроскопический объект испускает тепловые фотоны, способные изменять частоту атомных переходов, что делает весьма трудным создание измерителей времени со стабильностью выше 10-17. Конечно, часы можно поместить в идеальные условия, применив криогенную технику, но сотрудники ИЛФ СО РАН пошли другим путем.  

 
Чтобы решить проблему, ученые разработали комбинированные атомные часы. Их особенностью является использование суперпозиции (суммы) сразу двух частот с калибровочным коэффициентом. «Задействовав два, образно говоря, камертончика в одном атоме, мы можем сгенерировать так называемую синтетическую частоту, которая на два порядка менее чувствительна к тепловым фотонам в комнатных условиях, чем обычные атомные часы», — рассказывает Валерий Юдин. Для создания готовых приборов измерения времени с применением новой разработки потребуется два часовых лазера, каждый из которых будет стабилизирован за отведенный ему атомный переход, а также устройство, способное объединить их частоты в суперпозиционную частоту. 

 
Метод, разработанный сотрудниками института, позволит сократить расходы на производство высокоточных атомных часов за счет отсутствия необходимости использовать дорогостоящую и громоздкую криогенную технику. Помимо этого, появится возможность создания мобильных измерительных приборов, которые будут полезны, например, для проведения исследований гравитационных полей в различных местах. В данный момент технология находится на начальном этапе своего существования, ученые высказали идеи и произвели расчеты. Теперь важно, чтобы экспериментаторы обратили внимание на новый способ подавления теплового сдвига и приступили к работе над его практической реализацией.  

 
Дмитрий Медведев, студент факультета журналистики Гуманитарного института Новосибирского государственного университета. 

 
Источник: www.sbras.info

Похожие новости

  • 03/03/2021

    Учёный НГУ создал нейросеть для газоанализатора, помогающего выявлять коронавирус

    Один из способов оперативной диагностики состояния организма разработан учеными Института автоматики и электрометрии СО РАН совместно с компанией ScientificCoin. С помощью созданного ими газоанализатора Healthmonitor можно с точностью до 85 % определить наличие в организме коронавирусной инфекции.
    887
  • 16/04/2021

    Разработки самого высокого полета

     Каждый восьмой грант, получаемый учеными региона, посвящен аэрокосмическим исследованиям. Новосибирские ученые вносят большой вклад в освоение космоса: тренажер для стыковки космических аппаратов, технология для изготовления солнечных батарей на орбите и на Луне, катализаторы орто-пара-конверсии водорода, аэродинамические исследования перспективного российского многоразового космического корабля «Орел» — вот далеко не полный перечень разработок, рожденных в Сибири.
    974
  • 04/03/2021

    Томский госуниверситет открыл программу подготовки кадров для синхротрона «СКИФ»

     Томский государственный университет (ТГУ) запустил программу подготовки кадров для работы в центре коллективного пользования «Сибирский кольцевой источник фотонов» (ЦКП «СКИФ»), который будет создан под Новосибирском к 2024 году, сообщил 3 марта в пресс-центре ТАСС ректор ТГУ Эдуард Галажинский.
    561
  • 12/03/2021

    Премьер пообещал поддержку новосибирским проектам

    Подчеркнув, что «образование – опора, на которую можно поставить все, что вы хотите», свой визит в Новосибирский Академгородок глава Правительства РФ Михаил Мишустин начал с посещения Специализированного учебно-научного центра (говоря по старинке, физматшколы) Новосибирского государственного университета (СУНЦ НГУ).
    325
  • 26/05/2020

    Наука будущего: беспилотник на солнечных батареях, обрывы проволоки и молекулярные ножницы

    Как совмещать открытия в медицине и в космической сфере, чем бактериальная целлюлоза поможет экологии планеты и можно ли излечить от болезни, отредактировав ДНК, — в материале портала "Будущее России.
    2171
  • 20/04/2021

    «Экран ФЭП»: экологичная конкуренция, сотрудничество с государством и симбиоз с наукой

    Новосибирск занимает уникальное место на карте мирового рынка электронно-оптических преобразователей (ЭОП), применяемых в приборах ночного видения. Здесь сосредоточены три из четырех российских (а это примерно половина всех мировых) предприятий, выпускающих эти устройства.
    718
  • 22/04/2021

    «Машина времени»: модернизированная установка позволит заглянуть в прошлое на миллионы лет

    Ускорительная масс-спектрометрия (УМС) – сверхчувствительный метод изотопного анализа, при котором производится тщательная селекция атомов вещества с подсчётом интересующих нас изотопов. Метод позволяет с высокой точностью датировать археологические находки и геологические породы, изучать состав атмосферы и ткани живых организмов разных исторических периодов.
    1150
  • 16/10/2020

    Сильнее в математике: ректор НГУ Михаил Федорук выступил в рамках Совета молодых ученых и специалистов при Правительстве Новосибирской области

    Депутат Законодательного Cобрания Новосибирской области Михаил Федорук 15 октября выступил в рамках Совета молодых ученых и специалистов при Правительстве Новосибирской области.  «Наша цель – создать в Академгородке научный центр мирового уровня, добившись привлечения ведущих отечественных и зарубежных специалистов, – отметил депутат в докладе о работе над проектом Международного математического центра Академгородка, – причем специалистов не только именитых, но и молодых, готовых работать над передовыми научными задачами, такими как математические проблемы в естествознании, обработка данных, машинное обучение, криптография, эффективные алгоритмы и вычисления».
    1513
  • 19/04/2021

    Русский космос: Иллюзия полёта

    ​​Для оттачивания навыков космической фотосъёмки компания «СофтЛаб-НСК» разработала специальный тренажёр, который уже этой весной будет установлен в Звёздном городке, в Центре подготовки космонавтов имени Ю.
    593
  • 10/03/2021

    Премьер-министр РФ Михаил Мишустин расставил приоритеты для второго и третьего этапов программы «Академгородок 2.0»

    5 марта новосибирский Академгородок посетил премьер-министр России Михаил Владимирович Мишустин. Председатель СО РАН академик Валентин Николаевич Пармон поделился главными для Сибирского отделения итогами визита.
    892