​Ученые из Объединенного института высоких температур РАН "расплавили" графит и впервые детально изучили свойства жидкой формы углерода. Результаты их замеров были опубликованы в журнале Physical Review Letters.

"Для нас стало неожиданностью, что измеренные температуры плавления графита оказались выше общепринятых более чем на тысячу градусов. Кроме того, мы обнаружили, что скорость звука в жидком углероде возрастает при уменьшении плотности. Результаты этих экспериментов помогут улучшить свойства искусственных алмазов и углеродных нанотрубок", – заявил Анатолий Рахель из ОИВТ РАН.

Почти все элементы и химические соединения, существующие во Вселенной, могут принимать четыре разных агрегатных формы материи – превращаться в твердое тело, жидкость, газ и плазму. Эти превращения, так называемые фазовые переходы, уже много столетий изучаются физиками, и пока ученые не могут уверенно сказать, что они полностью понимают все подобные процессы.

К примеру, до сих пор физики до сих пор не могут точно объяснить то, почему некоторые элементы и соединения, такие как мышьяк, углекислота или чистый углерод, не обладают жидкой формой и напрямую превращаются в газ или в твердое тело при нагреве или охлаждении.

В теории, их можно заставить стать жидкостью, если сжать эти материалы до умеренных, в случае с СО2, или же очень высоких давлений, однако таких условий нет ни на Земле, ни на других планетах, за исключением их сверхплотных недр. По этой причине ученые до сих пор не имеют даже минимально точных представлений о том, при каких температурах и давлениях плавится углерод.

Физики и химики, как отмечает пресс-служба Российского научного фонда, уже несколько десятков лет активно пытаются "расплавить" алмазы или графит, получить жидкий углерод и изучить его свойства. Первую задачу японские ученые решили еще в 1997 году, пропустив мощнейший разряд электричества через углерод, однако в последующие годы ни они, ни другие физики не смогли измерить характеристики этой экзотической жидкости.

Рахель и его коллега Арсений Кондратьев первыми получили эти экспериментальные данные, используя остроумный прием. Они сконструировали графитовую пленку из идеально наложенных друг друга листов углерода и "упаковали" ее в особый прозрачный материал из сапфировых пластинок.

Этот "бутерброд" был собран таким образом, что его углеродная начинка расширялась только в одну сторону при пропускании через нее тока и резком нагреве. Это почти полностью исключало вероятность того, что внутри этой конструкции возникнут неоднородности, способные внести погрешность в измерения свойств жидкого углерода.

Сам процесс нагрева и плавления занимал примерно микросекунду, во время которой ученые пропускали лазерные импульс через "бутерброд", замеряя то, как поменялся объем расплавленного углерода, его плотность, температуру плавления, структуру и другие физические характеристики. Параллельно они изучали этот материал при помощи пирометров и других приборов.

Как оказалось, температура плавления и другие свойства жидкого углерода достаточно сильно расходились с тем, что ожидали увидеть физики, опираясь на результаты теоретических расчетов. Ученые предполагают, что некоторые из этих аномалий были связаны с тем, что атомы углерода начинают иначе соединяться друг с другом, подобно тому, как устроен алмаз и метан.

Похожие новости

  • 06/11/2018

    Российские физики разработали новую микроволновую антенну

    ​Ученые из Университета ИТМО совместно с коллегами из Физического института имени П. Н. Лебедева РАН предложили новую микроволновую антенну, которая создает однородное магнитное поле в большом объеме и позволяет синхронизировать электронные спины группы дефектов в структуре наноалмаза.
    408
  • 25/09/2018

    Физики измерили намагниченность диэлектрика за одну триллионную долю секунды

    Коллектив ученых из России, Германии, Швеции и Японии разработал способ изменить намагниченность диэлектрика, воздействуя на него сверхкороткими лазерными импульсами. Ученым удалось добиться времени изменения намагниченности в одну пикосекунду – это в 100 раз меньше, чем предполагалось ранее.
    406
  • 06/03/2019

    Российские ученые научились «разряжать» грозовые облака

    ​Российские физики научились высекать молнию из грозового облака до того, как оно приблизится к взрыво- или пожароопасному объекту. Опыты проводились с помощью искусственных грозовых ячеек, куда вводили модельные гидрометеоры.
    272
  • 25/01/2016

    Российские ученые разработали новую биосенсорную тест-систему для анализа крови

    ​Отныне анализ крови станет не сложнее теста на беременность, благодаря новой разработке исследователей из ИОФ РАН и МФТИ. Речь идет о новой  биосенсорной тест-системе, основанной на применении магнитных наночастиц и предназначенной для очень точного измерения концентрации белковых молекул (например, так называемых «маркеров», которые указывают на начало или развитие заболеваний) в различных образцах, включая непрозрачные или сильно окрашенные жидкости.
    1951
  • 13/12/2017

    Российский физик нашел новый способ запустить термоядерную реакцию

    Физик из МГУ и Института прикладной математики РАН доказал, что термоядерную реакцию можно запустить, используя уже существующие ускорители плазмы и магнитные ловушки, что может ускорить создание чистых источников энергии, говорится в статье, опубликованной в журнале Plasma Physics and Controlled Fusion.
    1013
  • 14/12/2018

    Грантополучатели РНФ в программе России-24 «Наука»

    Несколько дней назад вручили Нобелевскую премию за исследования в области лазерной физики. В России тоже успешно работают в этой области. Так, Лаборатория лазерного воздействия Объединенного института высоких температур (ОИВТ) РАН Михаила Аграната разработала и совершенствует фемтосекундный лазерный скальпель – оптический пинцет, который работает в бесконтактном режиме и помогает с генетической диагностикой эмбриона, если ему от родителей передались какие-то аномалии.
    900
  • 15/08/2018

    Описаны механизмы увеличения энергии электронов в химических реакциях

    ​Ученые описали, как можно увеличить энергию электронов в ходе химических реакций. Принципы этого процесса используются в химическом синтезе, однако детально их ранее не исследовали. Работа выполнена при поддержке гранта РНФ и опубликована в журнале Angewandte Chemie.
    834
  • 15/12/2017

    Российские ученые исследовали взаимодействия одиночных импульсов

    ​Российские ученые изучили поведение одиночных импульсов волн - однократных возмущений, распространяющихся в пространстве или в среде, - при их столкновении в нелинейных средах. Результаты работы ученых из России и Швеции опубликованы в журнале Nonlinear Dynamics.
    1022
  • 20/07/2018

    Физики из России создали «лампочку» из оптоволокна, работающую в космосе

    ​Российские ученые создали прототип оптоволоконных источников света, способных работать в космосе и не разрушаться под действием радиации. "Инструкции" по их сборке были опубликованы в Journal of Lightwave Technology.
    422
  • 16/10/2018

    Профессор Ильдар Габитов: электроника зашла в тупик

    ​Фотонный компьютер, Wi-Fi из лампочки, материалы-невидимки, боевые лазеры и сверхчувствительные сенсоры... Все это плоды одной и той же науки - фотоники. О том, почему именно свет сегодня стал объектом изучения чуть ли не для половины физиков во всем мире, "Огоньку" рассказал профессор Сколтеха Ильдар Габитов.
    505