Студенты-радиофизики оптимизируют технологию производства сенсоров рентгеновского излучения на основе арсенида галлия, компенсированного хромом, которые используются при работе Большого адронного коллайдера в CERN. Этот проект стал лучшим на Всероссийском конкурсе научно-технического творчества молодежи НТТМ-2017 в номинации "Новые материалы и химические технологии".

В команду студентов вошли Лейла Шаймерденова, Иван Щербаков и Ирина Колесникова. Они работают под руководством профессора ТГУ Олега Толбанова в лаборатории функциональной электроники. Технология компенсации арсенида галлия хромом - это уникальная разработка ТГУ.

- Мощности источников рентгеновского излучения растут, поэтому ужесточаются и требования к эффективности регистрации и стойкости детекторов, а также способности работать при высокой интенсивности ионизирующего излучения. Поэтому важно разрабатывать сенсоры, соответствующие таким потребностям, - говорит Лейла Шаймерденова.

Сегодня в основном создаются детекторы ионизирующего излучения на основе кремния и теллурида кадмия. Однако кремний не способен работать при больших интенсивностях излучения, а сенсоры на основе теллурида кадмия менее эффективные и более дорогие.

- Наши сенсоры на основе арсенида галлия, компенсированного хромом, регистрируют каждый квант в отдельности и распределяют информацию по энергии и координатам, - говорит Лейла. - Поэтому можно получить цветное изображение объектов различной плотности. К примеру, в медицине это изображение костей, мягких тканей и кровеносных сосудов.

Студенты оптимизируют процесс создания сенсоров, для этого они провели ряд экспериментов по определению основных параметров: эффективности сбора заряда, удельного электрического сопротивления, уровня темнового тока, распределения напряженности электрического поля. В результате удалось определить параметры для оптимизации технологии.

Сенсоры на основе арсенида галлия можно применять в медицине, системах досмотра грузов в аэропортах, вокзалах, на транспортных магистралях, а также в исследованиях в области физики высоких энергий. На данный момент проводятся эксперимент по воссоздания "большого взрыва" (проект ATLAS), способствующего образованию Вселенной. Регистрация данного явления осуществляется при помощи томских детекторов на основе арсенида галлия, компенсированного хромом.

В 2016 году ТГУ стал первым за 24 года новым участником из России с правом голоса крупнейшего проекта в CERN. Университет также действительный член коллаборации ATLAS на Большом адронном коллайдере (БАК).

Радиационно-стойкие детекторы ТГУ установлены на БАК, они на порядок устойчивее предыдущих. Детекторы используются для эксперимента ATLAS, цель которого - поиск сверхтяжелых элементарных частиц, таких как бозон Хиггса.

На данный момент томские детекторы используются также в канале коллайдера для измерения радиационного фона. Однако в будущем они, возможно, будут детектировать все вторичные частицы, которые доходят до них, передавая данные на аппаратуру CERN.

Похожие новости

  • 12/10/2016

    Томские ученые испытывают новые стекла для космических спутников

    ​Сотрудники НИИ ПММ ТГУ проводят испытания покрытий, созданных для защиты иллюминаторов, линз и зеркал космических аппаратов от эрозии. При помощи легкогазовой баллистической установки экспериментальные образцы обстреливают микрочастицами порошка железа со скоростью 5-8 километров в секунду.
    838
  • 11/10/2016

    Алмазы, выращиваемые в ТПУ, могут быть использованы для Большого адронного коллайдера

    ​Ученые лондонского университета Роял Холлоуэй (Royal Holloway, University of London, RHUL) предложили разработать новые датчики для Большого адронного коллайдера на основе тонких алмазных пленок, выращиваемых в Томском политехническом университете.
    750
  • 31/05/2016

    До конца 2018 года ТПУ завершит создание Научного парка

    ​Первая очередь Научного парка, открытая к 120-летнему юбилею Национального исследовательского Томского политехнического университета (ТПУ) стала, вероятно, самым весомым и ценным подарком вуза университетской элите, студентам, аспирантам и всем тем, кто не мыслит себя сегодня вне науки.
    818
  • 19/08/2016

    В МИСиС разработали супермагнит для реализации проектов в Арктике и в космосе

    ​Ученые Национального технологического исследовательского университета МИСиС разработал супермагнит, который сохраняет свои свойства при экстремальных условиях и может использоваться, как в Арктике, так и в космосе.
    589
  • 25/10/2016

    Томский аспирант улучшит диагностику мощнейшего в мире синхротрона

    ​Аспирант Физико-технического института Томского политеха Артем Новокшонов вместе с учеными Научной Лаборатории DESY (Германия) работает над улучшением и тестированием новых методик диагностики электронного пучка синхротрона PETRA III - одного из мощнейших источников синхротронного и рентгеновского излучения в мире.
    605
  • 05/12/2015

    3D-печать: новые технологии формируют новые производства

    ​Когда-то возможность распечатать предмет на принтере, подобно бумажному документу, была лишь в фантастических фильмах наравне с беспроводной гарнитурой и дверьми, которые сами раздвигаются при приближении человека.
    1263
  • 25/10/2016

    Томские ученые создадут первый в РФ томограф для изучения сложнейших объектов

    ​Ученые Томского политехнического университета выиграли конкурс Федеральной целевой программы "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 годы".
    692
  • 14/02/2017

    Томский ученый Илья Романченко - о физике и разработках

    ​​​Томский физик Илья Романченко получил премию президента в области науки и инноваций для молодых ученых за 2016 год. В интервью РИА Томск он рассказал о том, как его работа может помочь в борьбе против раковых клеток и террористов, почему в физике недостаточно просто выучить формулы, а также на что он собирается потратить 2,5 миллиона рублей.
    1225
  • 11/04/2017

    Томские ученые в ЦЕРНе сузили зону поиска частицы-посредника между видимой и невидимой Вселенной

    ​Ученым Физико-технического института Томского политехнического университета и их коллегам из Европейского центра ядерных исследований (ЦЕРН) за год удалось примерно на 25% сузить зону поиска темного фотона — частицы-посредника между видимым миром и темной материей — невидимой частью нашей Вселенной, влияющей на движение звезд и галактик.
    282
  • 10/03/2015

    Адаптивная оптика для наблюдения за объектами в космосе

    ​В Томске разрабатывают адаптивные системы, используя которые можно наблюдать объекты сквозь неоднородную среду без каких-либо искажений. С помощью новых технологий можно вести наблюдение за солнечной активностью.
    830