​Физики из Южного федерального университета с помощью математического моделирования установили механизм формирования газовых гигантов на примере системы HR 8799 – звезды в созвездии Пегаса, которая находится на расстоянии 129 световых лет от Солнца.

Исследование проливает свет на происхождение сложных планетарных систем, содержащих большое количество планет-гигантов. Работа ученых поддержана грантом РНФ. Статья об исследовании опубликована в журнале Astronomy&Astrophysics.

Сейчас известно две теории формирования газовых гигантов: последовательная аккреция и гравитационная неустойчивость. Схожи они только в том, что предполагают формирование протопланетного диска – скопления космической пыли и газа. Дальнейшие процессы, предшествующие формированию небесного тела, в этих теориях существенно различаются. Согласно теории последовательной аккреции, крошечные частицы пыли слипаются в крупные объекты. Если такой объект наберет достаточно массы, он притягивает к себе много газа и превращается в газовый гигант наподобие Юпитера, а если нет — в каменистую планету или ледяной гигант, как Земля или Уран.

Основные недостатки этой теории заключаются в том, что на больших расстояниях от звезды скорость процесса существенно замедляется и газ может рассеяться до того, как планета сформируется. Теория гравитационной неустойчивости утверждает, что газовые гиганты формируются из-за внезапного гравитационного коллапса в наиболее плотных и холодных областях протопланетного диска. На сегодняшний день многие астрономы склоняются к теории последовательной аккреции, которая, тем не менее, не объясняет все разнообразие наблюдаемых экзопланет.

Используя основные положения теории гравитационной неустойчивости и результаты астрофизических измерений, ученые НИИ физики ЮФУ провели компьютерное моделирование для системы HR 8799, содержащей четыре газовых гиганта на больших расстояниях от звезды, и выяснили механизм формирования этих планет. Система HR 8799 находится на расстоянии 129 световых лет от Земли, астрономы обратили на нее пристальное внимание в 2010 году, когда впервые получили инфракрасный спектр одной из ее планет.

Астрофизики установили, что на начальном этапе формирования газового гиганта на краю протопланетного диска образуются газопылевые сгустки. Размеры этих сгустков во много раз превосходят размеры образующихся из них впоследствии планет. Орбиты таких сгустков неустойчивы, и по мере накопления массы они начинают мигрировать к родительской звезде. Обычно это приводит к тому, что сгусток падает на звезду. Из-за этого происходит мощная вспышка светимости, подобная той, что наблюдается у молодых звезд.

Однако ученые с помощью компьютерного моделирования показали, что такая миграция может остановиться, если вещество сгустка будет истекать из его внешних слоев, приводя к ускорению вращения сгустка вокруг звезды. Исследователи также выявили еще один процесс, важный для формирования газового гиганта, - нагрев ядра сгустка в результате миграции к звезде с последующим распадом молекул водорода на атомы. Такая реакция приводит к быстрому сжатию сгустка и формированию плотного ядра протопланеты, которая затем эволюционирует в планету-гигант.

"Мы описали механизмы эволюции газовых гигантов от газопылевого сгустка до протопланеты на примере системы звезды HR 8799. В дальнейшем мы планируем изучить последующую эволюцию протопланет, чтобы объяснить архитектуру планетарных систем, подобных той, что мы рассмотрели в этой работе", - заключает автор исследования, ведущий научный сотрудник НИИ физики ЮФУ Эдуард Воробьев.

Похожие новости

  • 09/04/2019

    Сибирские ученые оптимизируют работу электронных дисплеев органическими полупроводниками

    ​Ученые Новосибирского государственного университета (НГУ) займутся исследованием свойств органических полупроводников (материалов, используемых в электронике), чтобы повысить эффективность используемых сейчас электронных дисплеев, сообщил ТАСС руководитель лаборатории органической оптоэлектроники НГУ Евгений Мостович.
    270
  • 14/05/2019

    От электрона к фотону: ИФП СО РАН — 55

    ​​Институт физики полупроводников им. А. В. Ржанова появился в результате объединения Института физики твердого тела и полупроводниковой электроники и Института радиофизики и электроники. С тех пор ИФП СО РАН остается признанным за рубежом и в России лидером в области создания и производства новых высокотехнологичных материалов, интегратором крупных научно-производственных проектов и коммуникационной площадкой для ученых, преподавателей, представителей индустриального и бизнес-сообщества.
    248
  • 17/03/2017

    Сибирские физики создадут точнейшие атомные часы

    Ученые из Института лазерной физики Сибирского отделения Российской академии наук, Новосибирского государственного университета и из Новосибирского государственного технического университета разработали сверхстабильный лазер для атомных часов, который позволит российским физикам создать устройства для измерения времени, не уступающие в точности западным аналогам, говорится в статье, опубликованной в Journal of Physics: Conf.
    1987
  • 28/05/2019

    Российские ученые нашли способ сделать металл прочнее

    ​Один из самых перспективных материалов для авиационной и автомобильной промышленности — алюминий. Ученые Национального исследовательского технологического университета «МИСиС» нашли простой и эффективный способ укрепления композитных материалов на его основе.
    131
  • 29/12/2018

    Самый большой российский телескоп будет изучать массивные звезды

    ​В Нижнем Архызе начались плановые астрономические наблюдения на БТА с обновленным шестиметровым зеркалом. Российские астрономы ждали этого больше 10 лет. В Специальной астрофизической обсерватории Российской академии наук (САО РАН), что находится в Нижнем Архызе в Карачаево-Черкесии, наконец-то возобновились плановые наблюдения на Большом азимутальном телескопе (БТА) с самым большим в Евразии шестиметровым зеркалом.
    1009
  • 16/04/2019

    Рентген помог российским физикам уточнить структуру воды

    ​Международный коллектив ученых точно измерил силу водородных связей между молекулами воды и опроверг популярную сегодня теорию о том, как устроена эта необычная жидкость. Новое теоретическое описание структуры воды было представлено в журнале Nature Communications.
    255
  • 16/11/2018

    Физики нашли способ точной настройки резонаторов для нелинейной оптики

    ​Исследовательская группа из Университета ИТМО и Австралийского национального университета обнаружила, что разные плоские периодические фотонные структуры, или метаповерхности, одинаково реагируют на нарушение симметрии своих ячеек, или метаатомов.
    363
  • 25/09/2018

    Физики измерили намагниченность диэлектрика за одну триллионную долю секунды

    Коллектив ученых из России, Германии, Швеции и Японии разработал способ изменить намагниченность диэлектрика, воздействуя на него сверхкороткими лазерными импульсами. Ученым удалось добиться времени изменения намагниченности в одну пикосекунду – это в 100 раз меньше, чем предполагалось ранее.
    438
  • 20/08/2018

    Учеными созданы железные спирали тоньше человеческого волоса

    ​Исследователи СПбГУ смогли синтезировать микроспирали соединений железа диаметром около 12 микрон - почти в десять раз тоньше человеческого волоса. Их можно будет использовать, например, для создания сенсоров с высокой чувствительностью, а также в качестве миниатюрных электромагнитов или индукторов.
    439
  • 05/03/2018

    ​Ученые ТГУ создали алгоритм для расчета фотофизических и люминесцентных характеристик молекул

    ​Ученые кафедры оптики и спектроскопии физического факультета ТГУ с коллегами из Швеции и Финляндии создали алгоритм для расчета фотофизических и люминесцентных характеристик молекул. Благодаря этому алгоритму можно вычислять оптические, люминесцентные (светимость, квантовый выход флуоресценции) свойства молекул и веществ с использованием высокоточных методов квантовой химии.
    801