Одному из старейших и притом действующих исследовательских ядерных реакторов — томскому ИРТ-Т (Исследовательский реактор тепловой-Томский) — в этом году исполнилось 50 лет. Корреспондент «Чердака» побывала в реакторном зале и лабораториях Томского политехнического университета и выяснила, что и зачем «варят» сегодня в своем реакторе томские ученые.

По огромному залу разносится эхо слов экскурсовода: «Реактор работает постоянно, без перерывов. Даже сейчас он функционирует. Но на самой малой мощности, поэтому мы с вами не видим в воде голубого свечения заряженных частиц. Вам бояться радиации не стоит». Мы стоим на так называемом «пятаке» — крышке, покрывающей бассейн, в котором находится активная зона реактора. Вода в бассейне сверхчистая — настолько, что не оставляет на поверхностях никаких следов, хотя ее не меняли с 1984 года, с момента последней крупной реконструкции физического зала. 50 кубометров воды обеспечивают охлаждение реактора, защиту от радиации и замедление нейтронов. Вокруг зала с бассейном расположились лаборатории. Еще пара минут на фотосъемку — и маршрут нашей экскурсии проляжет как раз через них.

Мощность реактора ТПУ — 6 МВт. Для сравнения: мощности больших АЭС исчисляются тысячами мегаватт. Но исследовательские тепловые реакторы, к которым относится томский, в отличие от промышленных, просты в исполнении и управлении. Их создавали для того, чтобы не только получать научные данные, но и готовить будущих атомщиков. Для своего компактного размера ИРТ-Т имеет большое количество экспериментальных каналов, что позволяет одновременно облучать множество мишеней. А бериллиевый замедлитель и ловушки в зоне центральных каналов обеспечивают более плотный, по сравнению с другими реакторами того же типа, поток нейтронов.

Томский ИРТ сооружался одним из первых в стране: строительство началось в 1959 году, а первая цепная реакция началась в июле 1967-го. Начальный уровень мощности — 1 МВт — был увеличен в шесть раз после первой модернизации в 1984 году. Еще одно обновление реактор пережил в 2006-м, когда в соответствии с требованиями времени привели систему управления и защиты. К 50-летию исследовательский реактор ТПУ вновь усовершенствован: модернизированы линии легирования кремния, производства радиофармпрепаратов, линия для испытания материалов под воздействием мощных потоков нейтронов и гамма-излучения. Срок службы ИРТ-Т официально продлен: он продолжит работать как минимум до 2035 года.

В пультовой, где двое инженеров следят за состоянием реактора, новейшая техника соседствует с приборами, установленными здесь еще в годы строительства ИРТ-Т. Реактор, конечно, управляется автоматикой — так безопаснее и современнее, а технологии прошлого века здесь лишь «на подхвате». И в качестве действующих музейных экспонатов.

Промышленная алхимия

Секрет философского камня — по крайней мере, ту его часть, что касается трансмутации вещества, а не духа, — выяснил еще в начале прошлого века Резерфорд. Атомы одних элементов превращаются в атомы других в ходе радиоактивного распада их ядер или ядерных реакций, которые начинаются при бомбардировке атомов частицами, обыкновенно нейтронами. И мы давно этим пользуемся в промышленных масштабах.

Главная задача ИРТ-Т сейчас — быть источником нейтронов и гамма-излучения для исследований в области ядерной и радиационной физики, нейтронно-активационного анализа и ядерной медицины.

Например, сегодня в мире до 90% производства полупроводников обеспечивается монокристаллическим легированным кремнием. Кремний — основа микро- и силовой электроники: от микропроцессоров смартфона до электромобилей. Но обычный, чистый кремний для сегодняшней электроники уже недостаточно хорош. Поэтому его свойства улучшают при помощи легирования — внедрения примесей. Используются разные технологии легирования, но для равномерного введения добавок отлично подходит ядерный реактор.

— Под воздействием потока тепловых нейтронов кремний-30 (которого около 3% в природной смеси) переходит в радиоактивный изотоп кремний-31, который превращается в стабильные атомы фосфора-31. Преимущество технологии в том, что легирующая примесь распределяется равномерно по всему объему, в отличие от металлургического способа, при котором фосфор вводят в расплав кремния, — говорит инженер лаборатории № 33 ядерного реактора ТПУ Евгений Емец.

В России сегодня подобный нейтронно-легированный кремний производят всего пять реакторов, и один из них — реактор ТПУ. Здесь получают до пяти тонн легированного кремния в год, при этом его неоднородность — около 3%, что соответствует мировым стандартам. В России электротехническая промышленность пока только набирает обороты, поэтому основные заказчики ТПУ — из-за рубежа. К примеру, сейчас в Томске легируют кремний для китайских компаний.

— На нашем реакторе мы обрабатываем слитки диаметром до 128 мм. В дальнейшем планируется создать канал для легирования слитков кремния диаметром до 205 мм. Это значительная глубина проникновения, которая позволяет готовить полупроводники больших размеров. В мире таких установок — единицы, — отмечает Евгений Емец.

Другой пример того, как свойства материалов изменяются под воздействием ядерных реакций, — обработка топазов и аметистов. «Позагорав» в реакторе, камни приобретают интересные оттенки и ювелирную ценность. Бомбардировка быстрыми нейтронами преобразует кристаллическую решетку минерала, и топаз меняет цвет — от бледно-голубого до темно-синего. При этом чем дольше материал находится в реакторе, тем более насыщенны оттенки.

Сотрудники реактора тщательно проверяют обработанные камни на предмет излучения. Заказчику уходят только «чистые» топазы. Однако из-за примесей внутри минерала камни могут долго сохранять радиоактивность — такие экземпляры остаются в специальном хранилище при реакторе, пока не достигнут приемлемых показателей РА. По словам инженеров лаборатории, многие камни лежат там годами и «даже не собираются сдаваться».

Охотники за опухолями

Кроме микроэлектроники и «апгрейда» драгоценных камней, реактор работает и на медицину. В сентябре томские политехники заключили первые контракты на продажу дефицитного для России фосфора-32. Этот изотоп фосфора нужен и ученым, и медикам, но несколько лет не производился в нашей стране. Линия по производству фосфора-32 и ортофосфорной кислоты на его основе запущена в прошлом году при ядерном реакторе томского политеха.

— Под действием нейтронов из серы образуется изотоп фосфор-32. Он интересен заказчикам и сам по себе, и в составе ортофосфорной кислоты, которую мы также начали выпускать на линии при реакторе. Ортофосфорная кислота используется в производстве удобрений, в пищевой и химической промышленности. Изотоп фосфора-32 нестабилен, и его нельзя заготовить впрок, но наших мощностей хватит, чтобы покрыть запросы страны, — говорит заведующий кафедрой технической физики ТПУ Игорь Шаманин.

Фосфор-32 обладает слабым бета-излучением, поэтому может служить «маячком» для исследователей. В молекуле один из атомов стабильного фосфора-31 заменяют радиоактивным изотопом. Его излучение «подсвечивает» молекулы и дает возможность следить за их перемещениями — и потому используется в биохимических и молекулярных исследованиях.

Но исследованиями его применение не ограничивается. С помощью изотопа фосфора диагностируют онкологии головного мозга, внутриглазные метастазы, костные метастазы рака молочной железы. Концентрации изотопа в растущих тканях с интенсивным обменом веществ значительно выше, потому что ядра делящихся клеток усиленно поглощают фосфор-32. Поэтому, попав в организм, он начинает скапливаться в опухолях и других воспалительных инфильтратах.

Передвижения фосфора-32 по тканям организма, наблюдаемые с помощью томографа, покажут отклонения в работе жизненно важных органов — почек, сердца, плаценты. Кроме того, бета-частицы, испускаемые при распаде изотопа, способны на небольшом расстоянии уничтожать клетки. Поэтому это соединение врачи используют и для лучевой терапии при различных формах злокачественных заболеваний кроветворной системы и лимфоидной ткани.

В лаборатории № 31 ядерного реактора ТПУ исследователи готовятся к старту клинических испытаний нового радиофармпрепарата, который даст точный ответ о местах скопления раковых клеток в лимфатической системе организма. Политехники работают вместе с коллегами из томского научно-исследовательского медицинского центра (НИМЦ).

— Сегодня при обнаружении злокачественной опухоли, не зная расположения в этой области лимфоузлов — ловушек для раковых клеток, хирурги на всякий случай удаляют вместе с опухолью и другие контактирующие с ней ткани — как правило, с избытком. Например, при раке молочной железы часто удаляют всю грудь, включая лимфоузлы и лимфотоки от шеи до поясницы. Хотя это предотвращает рецидив, но ухудшает качество дальнейшей жизни пациента. Новый препарат укажет точно, где располагаются ближайшие к опухоли сторожевые лимфоузлы и есть ли в них раковые клетки. Если нет, то и опухоль удалят с минимальными повреждениями здоровых тканей. Восстановление организма после перенесенного заболевания и операции пойдет быстрее. Подобной диагностики такого уровня достоверности в мире пока нет, — подчеркивает сотрудник лаборатории № 31 Евгений Нестеров.

Ключевым элементом нового препарата стал короткоживущий изотоп технеций-99м — один из самых востребованных изотопов в ядерной медицине. С его помощью проводят до 70% радиодиагностических процедур в мире. Популярность технеция объясняется тем, что этот радионуклид не дает чрезмерной лучевой нагрузки на человека и быстро выводится из организма. При этом из-за значительной энергии гамма-излучения перемещение технеция-99м по организму и его накопление в тканях визуализируется с помощью однофотонной эмиссионной томографии. Доставка технеция-99м к тому или иному органу осуществляется специально подобранными химическими соединениями — компонентами РФП, которые вступают в реакции обмена с исследуемыми органами и тканями. При этом больные и здоровые клетки «кушают» меченый препарат с разной скоростью, что и позволяет обнаружить патологию.

— Это выглядит примерно как школьный класс: здесь встречаются разные ребятишки, но когда звенит звонок, они хватают рюкзачки и бегут каждый к своей семье. «Рюкзачки» — это и есть наш технеций, — рассказывает Александр Рогов, сотрудник лаборатории № 31 исследовательского ядерного реактора ТПУ.

В препарате, синтезированном для диагностики раковой опухоли, томские политехники прикрепили технециевый рюкзачок к наночастицам оксида алюминия. На томографии технеций «подсвечивает» пораженные лимфоузлы, помогая врачу определить объемы удаляемой ткани. Ученые убеждены, что при успешном прохождении клинических испытаний новый препарат выйдет на рынок уже к 2021 году.

Яна Пчелинцева

Источники

Полвека трансмутаций
Академгородок (academcity.org), 16/10/2017

Похожие новости

  • 02/07/2016

    Открытие сибирских физиков полвека двигает науку

    Ровно 50 лет тому назад в Томском политехническом институте (ТПИ) (ныне Национальный исследовательский Томский политехнический университет) произошло событие, послужившее развитию целого ряда новых научно-технических направлений.
    1114
  • 05/06/2017

    XXIV рабочая группа «Аэрозоли Сибири»

    ​​​​В соответствии с планом совещаний и конференций Сибирского отделения РАН на 2017 г. Институт оптики атмосферы​ им. В.Е.Зуева СО РАН с 28 ноября по 1 декабря 2017 г. проводит в Томске XXIV Рабочую группу ​"Аэрозоли Сибири".
    433
  • 13/04/2016

    Академику Геннадию Саковичу - 85 лет!

    ​Академик Геннадий Викторович Сакович рассказывает о своем пути в науке, делится воспоминаниями об учителях, учениках и коллегах. - Геннадий Викторович, где прошло ваше детство? - После того как папа демобилизовался, мы - родители и старший брат - окончательно осели на постоянное место жительства в Ворошилове (Уссурийске).
    976
  • 18/10/2016

    Академику Аннину Борису Дмитриевичу исполняется 80 лет

    ​Аннин Борис Дмитриевич родился 18 октября 1936 года, Совхоз им. Ленина Шульгинского района Тамбовской области. В 1959 году окончил Механико-математический факультет МГУ.С 1959 года работает в Институте гидродинамики им.
    904
  • 09/06/2017

    Томский Академгородок готовится к празднованию юбилея

    ​​10 и 11 июня в томском Академгородке пройдут праздничные мероприятия, посвященные 10-летнему юбилею. 10 июня в 11.00 День Академгородка по традиции начнется шествием колонн сотрудников научных и социально-культурных учреждений Томского науч​ного центра (пл.
    432
  • 10/03/2015

    Адаптивная оптика для наблюдения за объектами в космосе

    ​В Томске разрабатывают адаптивные системы, используя которые можно наблюдать объекты сквозь неоднородную среду без каких-либо искажений. С помощью новых технологий можно вести наблюдение за солнечной активностью.
    868
  • 26/11/2016

    «Аэрозоли Сибири»: XXIII рабочая группа

    ​В соответствии с планом совещаний и конференций Сибирского отделения РАН на 2016 год Институт оптики атмосферы им. В.Е. Зуева СО РАН с 29 ноября по 2 декабря 2016 года проводит в Томске XXIII Рабочую группу "Аэрозоли Сибири".
    1399
  • 01/11/2017

    40 лет со дня открытия Института сильноточной электроники СО РАН

    ​Институт сильноточной электроники СО АН СССР был организован постановлением Госкомитета СССР по науке и технике и постановлением Президиума Сибирского отделения АН СССР в 1977 году. В настоящее время институт возглавляет академик Николай Ратахин.
    96
  • 14/08/2015

    В ТГУ пройдет 5-я Международная научная конференция "Новые оперативные технологии"

    В 2002 году по инициативе члена-корреспондента РАМН, профессора И.Д. Кирпатовского впервые в Москве была проведена научная конференция "Новые оперативные технологии". Все последующие конференции при поддержке профессора И.
    1447
  • 06/09/2017

    6 сентября исполнилось 100 лет со дня рождения академика Михаила Федоровича Жукова

    ​На рабфаке юный Михаил прочел научно-популярные книги Константина Эдуардовича Циолковского и отважился написать кумиру письмо – попросить совета, куда пойти учиться. Великий ученый посоветовал механико-математический факультет МГУ.
    181