​Прошли успешные испытания так называемых детонационных ракетных двигателей, давшие очень интересные результаты. Опытно-конструкторские работы в этом направлении будут продолжены.

Детонация - это взрыв. Можно ли ее сделать управляемой? Можно ли на базе таких двигателей создать гиперзвуковое оружие? Какие ракетные двигатели будут выводить необитаемые и пилотируемые аппараты в ближний космос? Об этом разговор с заместителем гендиректора - главным конструктором "НПО Энергомаш им. академика В.П. Глушко" Петром Левочкиным.

Петр Сергеевич, какие возможности открывают новые двигатели?

Петр Левочкин: Если говорить о ближайшей перспективе, то сегодня мы работаем над двигателями для таких ракет, как "Ангара А5В" и "Союз-5", а также другими, которые находятся на предпроектной стадии и неизвестны широкой публике. Вообще наши двигатели предназначены для отрыва ракеты от поверхности небесного тела. И она может быть любой - земной, лунной, марсианской. Так что, если будут реализовываться лунная или марсианская программы, мы обязательно примем в них участие.

Какова эффективность современных ракетных двигателей и есть ли пути их совершенствования?

Петр Левочкин: Если говорить об энергетических и термодинамических параметрах двигателей, то можно сказать, что наши, как, впрочем, и лучшие зарубежные химические ракетные двигатели на сегодняшний день достигли определенного совершенства. Например, полнота сгорания топлива достигает 98,5 процента. То есть практически вся химическая энергия топлива в двигателе преобразуется в тепловую энергию истекающей струи газа из сопла.

Совершенствовать двигатели можно по разным направлениям. Это и применение более энергоемких компонентов топлива, введение новых схемных решений, увеличение давления в камере сгорания. Другим направлением является применение новых, в том числе аддитивных, технологий с целью снижения трудоемкости и, как следствие, снижение стоимости ракетного двигателя. Все это ведет к снижению стоимости выводимой полезной нагрузки.

Однако при более детальном рассмотрении становится ясно, что повышение энергетических характеристик двигателей традиционным способом малоэффективно.

Использование управляемого взрыва топлива может дать ракете скорость в восемь раз выше скорости звука

Почему?

Петр Левочкин: Увеличение давления и расхода топлива в камере сгорания, естественно, увеличит тягу двигателя. Но это потребует увеличение толщины стенок камеры и насосов. В результате сложность конструкции и ее масса возрастают, энергетический выигрыш оказывается не таким уж и большим. Овчинка выделки стоить не будет.

То есть ракетные двигатели исчерпали ресурс своего развития?

 
 
 
 
 

Петр Левочкин: Не совсем так. Выражаясь техническим языком, их можно совершенствовать через повышение эффективности внутридвигательных процессов. Существуют циклы термодинамического преобразования химической энергии в энергию истекающей струи, которые гораздо эффективнее классического горения ракетного топлива. Это цикл детонационного горения и близкий к нему цикл Хамфри.

Сам эффект топливной детонации открыл наш соотечественник - впоследствии академик Яков Борисович Зельдович еще в 1940 году. Реализация этого эффекта на практике сулила очень большие перспективы в ракетостроении. Неудивительно, что немцы в те же годы активно исследовали детонационный процесс горения. Но дальше не совсем удачных экспериментов дело у них не продвинулось.

Теоретические расчеты показали, что детонационное горение на 25 процентов эффективней, чем изобарический цикл, соответствующий сгоранию топлива при постоянном давлении, который реализован в камерах современных жидкостно-рактивных двигателей.

А чем обеспечиваются преимущества детонационного горения по сравнению с классическим?

Петр Левочкин: Классический процесс горения - дозвуковой. Детонационный - сверхзвуковой. Быстрота протекания реакции в малом объеме приводит к огромному тепловыделению - оно в несколько тысяч раз выше, чем при дозвуковом горении, реализованному в классических ракетных двигателях при одной и той же массе горящего топлива. А для нас, двигателистов, это означает, что при значительно меньших габаритах детонационного двигателя и при малой массе топлива можно получить ту же тягу, что и в огромных современных жидкостных ракетных двигателях.

Не секрет, что двигатели с детонационным горением топлива разрабатывают и за рубежом. Каковы наши позиции? Уступаем, идем на их уровне или лидируем?

Петр Левочкин: Не уступаем - это точно. Но и сказать, что лидируем, не могу. Тема достаточно закрыта. Один из главных технологических секретов состоит в том, как добиться того, чтобы горючее и окислитель ракетного двигателя не горели, а взрывались, при этом не разрушая камеру сгорания. То есть фактически сделать настоящий взрыв контролируемым и управляемым. Для справки: детонационным называют горение топлива во фронте сверхзвуковой ударной волны. Различают импульсную детонацию, когда ударная волна движется вдоль оси камеры и одна сменяет другую, а также непрерывную (спиновую) детонацию, когда ударные волны в камере движутся по кругу.

Насколько известно, с участием ваших специалистов проведены экспериментальные исследования детонационного горения. Какие результаты были получены?

Петр Левочкин: Были выполнены работы по созданию модельной камеры жидкостного детонационного ракетного двигателя. Над проектом под патронажем Фонда перспективных исследований работала большая кооперация ведущих научных центров России. В их числе Институт гидродинамики им. М.А. Лаврентьева, МАИ, "Центр Келдыша", Центральный институт авиационного моторостроения им. П.И. Баранова, Механико-математический факультет МГУ. В качестве горючего мы предложили использовать керосин, а окислителя - газообразный кислород. В процессе теоретических и экспериментальных исследований была подтверждена возможность создания детонационного ракетного двигателя на таких компонентах. На основе полученных данных мы разработали, изготовили и успешно испытали детонационную модельную камеру с тягой в 2 тонны и давлением в камере сгорания около 40 атм.

Данная задача решалась впервые не только в России, но и мире. Поэтому, конечно, проблемы были. Во-первых, связанные с обеспечением устойчивой детонации кислорода с керосином, во-вторых, с обеспечением надежного охлаждения огневой стенки камеры без завесного охлаждения и массой других проблем, суть которых понятна лишь специалистам.

Можно ли использовать детонационный двигатель в гиперзвуковых ракетах?

Петр Левочкин: И можно, и нужно. Хотя бы потому, что горение топлива в нем сверхзвуковое. А в тех двигателях, на которых сейчас пытаются создать управляемые гиперзвуковые летательные аппараты, горение дозвуковое. И это создает массу проблем. Ведь если горение в двигателе дозвуковое, а двигатель летит, допустим, со скоростью пять махов (один мах равен скорости звука), надо встречный поток воздуха затормозить до звукового режима. Соответственно, вся энергия этого торможения переходит в тепло, которое ведет к дополнительному перегреву конструкции.

А в детонационном двигателе процесс горения идет при скорости как минимум в два с половиной раза выше звуковой. И, соответственно, на эту величину мы можем увеличить скорость летательного аппарата. То есть уже речь идет не о пяти, а о восьми махах. Это реально достижимая на сегодняшний день скорость летательных аппаратов с гиперзвуковыми двигателями, в которых будет использоваться принцип детонационного горения.

Что будет дальше?

Петр Левочкин: Это сложный вопрос. Мы только приоткрыли дверь в область детонационного горения. Еще очень много неизученного осталось за скобками нашего исследования. Сегодня совместно с РКК "Энергия" мы пытаемся определить, как может в перспективе выглядеть двигатель в целом с детонационной камерой применительно к разгонным блокам.

На каких двигателях человек полетит к дальним планетам?

Петр Левочкин: По-моему мнению, еще долго мы будем летать на традиционных ЖРД занимаясь их совершенствованием. Хотя безусловно развиваются и другие типы ракетных двигателей, например, электроракетные (они значительно эффективнее ЖРД - удельный импульс у них в 10 раз выше). Увы, сегодняшние двигатели и средства выведения не позволяют говорить о реальности массовых межпланетных, а уж тем более межгалактических перелетов. Здесь пока все на уровне фантастики: фотонные двигатели, телепортация, левитация, гравитационные волны. Хотя, с другой стороны, всего сто с небольшим лет назад сочинения Жюля Верна воспринимались как чистая фантастика. Возможно, революционного прорыва в той сфере, где мы работаем, ждать осталось совсем недолго. В том числе и в области практического создания ракет, использующих энергию взрыва.

 

dvig1000.png 

Инфографика "РГ" / Александр Смирнов / Сергей Птичкин 

 

Досье "РГ"

 
 
 
 

"Научно-производственное объединение Энергомаш" основано Валентином Петровичем Глушко в 1929 году. Сейчас носит его имя. Здесь разрабатывают и выпускают жидкостные ракетные двигатели для I, в отдельных случаях II ступеней ракет-носителей. В НПО разработано более 60 различных жидкостных реактивных двигателей. На двигателях "Энергомаша" был запущен первый спутник, состоялся полет первого человека в космос, запущен первый самоходный аппарат "Луноход-1". Сегодня на двигателях, разработанных и произведенных в НПО "Энергомаш", взлетает более девяноста процентов ракет-носителей в России.

Сергей Птичкин

Источники

Топливо взрывается - полет нормальный
Российская газета, 19/01/2018
Топливо взрывается - полет нормальный
Российская газета # Москва, 19/01/2018
В РФ испытали модель детонационного двигатели для ракет будущего
ВПК новости (vpk.name), 19/01/2018
Левочкин: Возможность создания детонационного двигателя подтвердилась
События дня (inforu.news), 18/01/2018
Левочкин: Возможность создания детонационного двигателя подтвердилась
Российская газета (rg.ru), 18/01/2018
В РФ испытали модель детонационного двигатели для ракет будущего
Alfa-industry.ru, 19/01/2018
В РФ испытана модель камеры сгорания детонационного ракетного двигателя
Fin4u.ru, 19/01/2018
В России испытали детонационный двигатель тягой две тонны
Технополис завтра (kramtp.info), 19/01/2018
В России испытали детонационный двигатель тягой две тонны
livejournal.com, 19/01/2018
В России испытали детонационный двигатель тягой две тонны
Nanonewsnet.ru, 19/01/2018
В России испытали детонационный двигатель тягой две тонны
Русская планета (rusplt.ru), 19/01/2018
В России испытали детонационный двигатель тягой две тонны
Русский переплет (pereplet.ru), 19/01/2018
В России испытали детонационный двигатель тягой две тонны
Texnomaniya (texnomaniya.ru), 21/01/2018
В России успешно испытан детонационный ракетный двигатель
Око планеты (oko-planet.su), 21/01/2018
Детонационный ракетный двигатель успешно испытан в России
Titus (titus.kz), 21/01/2018
Д.Рогозин: в России успешно испытан детонационный ракетный двигатель
E-news.su, 20/01/2018
В России успешно испытан детонационный ракетный двигатель
Империя (imperiyanews.ru), 20/01/2018
В России успешно испытан детонационный ракетный двигатель
ИА REX, 20/01/2018
В России испытали детонационный двигатель тягой две тонны
Научный корреспондент (nauchkor.ru), 20/01/2018
об успешном испытании детонационного ракетного двигателя
Глобальная авантюра (glav.su), 20/01/2018
В России испытали полноразмерный детонационный двигатель тягой две тонны
News2 (news2.ru), 22/01/2018
Петр Левочкин: "Топливо взрывается - полет нормальный "
Оружие России (arms-expo.ru), 23/01/2018
Топливо взрывается - полет нормальный
Arhano.ru, 02/02/2018
Топливо взрывается - полет нормальный
Технополис завтра (kramtp.info), 02/02/2018
Топливо взрывается - полет нормальный
livejournal.com, 02/02/2018
Топливо взрывается - полет нормальный
Cont.ws, 02/02/2018

Похожие новости

  • 20/12/2018

    Российские ученые смогут предотвращать авиакатастрофы в условиях обледенения

    Ученые Института прикладной астрономии РАН и Института мониторинга климатических и экологических систем СО РАН запатентовали аппарат прогнозирования обледенений, который сделает использование дорогих реагентов рациональным и предотвратит крушения сотен самолетов.
    1088
  • 14/05/2019

    В России создали новый полупроводниковый материал для солнечных батарей

    ​Группа российских ученых создала новый полупроводниковый материал без использования свинца, который может быть применен в солнечных батареях для повышения их эффективности. Об этом в понедельник сообщила пресс-служба одного из участников исследования Сколковского института науки и технологий (Сколтеха).
    544
  • 10/07/2019

    В России пройдут испытания новой модели сверхзвукового самолёта

    В России в 2019 году пройдут испытания модели сверхзвукового делового самолета разработки "Туполева" со сниженным уровнем звукового удара. Его испытают в аэродинамической трубе, сообщил "Интерфаксу" источник в авиапроме.
    718
  • 26/11/2018

    Академик Валерий Рубаков: эпоха запланированных открытий кончилась

    Наука подошла к своему пределу: что за ним, ученые не знают. По крайней мере, в области физики элементарных частиц. О темной энергии, о бесконечном пространстве и о том, как сказываются на научном сообществе политические санкции, "Огоньку" рассказал академик РАН Валерий Рубаков.
    1132
  • 08/01/2019

    Гонка квантовых компьютеров и лечение рака: ведущие российские ученые выделили главные исследования года

    ​​Сжатие информации, гонка квантовых компьютеров, борьба с раком и постижение Арктики - российские академики по нашей просьбе выделили наиболее, на их взгляд, прорывные научные результаты 2018 года. Квантовые компьютеры Академик РАН, экс-председатель Сибирского отделения РАН, физик Александр Асеев: - Я бы выделил три направления, которые «выстрелили» в этом году в области электроники.
    1248
  • 15/11/2019

    Татьяна Голикова: «Привычное название СКИФ»

    ​Заместитель председателя правительства России рассказала на Общем собрании членов РАН о мерах государственной поддержки развития науки на ближайшие годы.  Выступая перед членами Академии, вице-премьер Татьяна Алексеевна Голикова сказала: «Я знаю, что Общее собрание посвящено не только выборам членов РАН, оно затрагивает и содержательные вопросы развития российской науки… Президент страны впервые, наверное, за современную ее историю объявил науку в качестве национального приоритета, и это, безусловно, получило поддержку в ее финансовом обеспечении».
    801
  • 25/09/2019

    Ученые ТГУ нашли новые пульсации в пламени «горелки» для тяжелого топлива

    Исследования нового устройства, созданного в Институте теплофизики Сибирского отделения Российской академии наук и предназначенного для бессажевого сжигания тяжёлого углеводородного топлива с паровой газификацией, провели на механико-математическом факультете.
    361
  • 26/12/2018

    Какими научными достижениями запомнится 2018 год

    ​Мода на рейтинги и хит-парады не обошла и науку. Многие журналы и агентства назвали лучшие работы 2018 года. Сразу надо отметить одну особенность. Последние годы явным фаворитом был космос, а точнее, открытие гравитационных волн, зафиксированных при слиянии двух "черных дыр".
    1357
  • 05/10/2018

    Глава РАН Александр Сергеев: премию «Глобальная энергия» надо развивать с помощью новых номинаций

    Международную премию "Глобальная энергия" нужно развивать, расширив список ее номинаций, заявил ТАСС президент Российской академии наук (РАН) Александр Сергеев. "Это одна из самых главных мировых премий в области науки и техники.
    844
  • 23/11/2017

    Сибирские ученые модернизировали метод расчета движения жидкостей

    ​Исследователи из Сибирского федерального университета (СФУ) в сотрудничестве с коллегами из Московского государственного университета и Сибирского отделения РАН предложили использовать для гидродинамических расчетов систему из нескольких графических процессоров вместо центрального.
    1092