Физики, работающие с веществом на наноуровне, не сомневаются: уже через пару десятков лет их открытия изменят наш мир до неузнаваемости. Войдет в обиход гибкая электроника, суперэкономичные аккумуляторы, построят трос для космического лифта, это не говоря уже об одежде с наночастицами, которую можно не стирать месяцами… О самом прикладном разделе современной науки Елене Кудрявцевой рассказал профессор Сколковского института науки и технологий и Университета Аалто (Финляндия) Альберт Насибулин.
Чтобы получить углеродные нанотрубки — один из самых перспективных материалов, созданных человеком за все века, что он существует,— в лаборатории наноматериалов Сколтеха уходит секунд 12.
Будущее начинается с мелочей. Осталось выяснить — с каких именно
Профессор РАН Альберт Насибулин большую часть своей научной деятельности провел в институтах Финляндии, успешно совмещая фундаментальные исследования с разработкой наукоемких технологий. Сейчас он руководитель лаборатории наноматериалов Сколтеха, специалист в области синтеза, исследования механизмов роста и применения наноматериалов, автор и соавтор более 230 научных работ и 24 патентов.
Профессор Насибулин — автор оригинальных технологий синтеза однослойных углеродных нанотрубок (ОУНТ) аэрозольным методом химического осаждения из газовой фазы. Он также разработал метод изготовления свободностоящих пленок ОУНТ с толщиной от субмонослоя до нескольких сотен нанометров. Предложил новый, простой и быстрый метод синтеза и изучения механизмов роста нитевидных кристаллов оксидов различных металлов. Является сооснователем двух компаний, которые успешно коммерциализируют результаты научной деятельности.
За это время в реакторе — он напоминает высокотехнологичную духовую печку — углеродные компоненты распадаются на частицы нанометрового размера, а затем собираются в новый материал. Его переносят на гибкую или эластичную подложку (в виде пленки), и вот перед нами основа для электроники будущего, прозрачной, гибкой и эластичной. Если положить такую пленку на любую поверхность — стекло, дерево, ткань, даже бумажные обои,— она превратится в сенсорный экран (см. фото на с. 33). Мало того, вы также можете придать этому экрану любую форму. Ученые обещают: при нынешнем темпе разработок такие новинки войдут в нашу жизнь в ближайшие годы.
— Альберт Галийевич, эта техника напоминает о временах, когда слово «нанотехнологии» звучало из телевизора каждый день. Помнится, лет 5–10 назад уже ждали прорыва, но его не произошло. Надежды оказались напрасными?
— Вовсе нет, в XXI веке нанотехнологии наряду с информационными и биотехнологиями стали фундаментом научно-технической революции.
Не секрет, что этот сектор науки рассматривают как рычаг политического влияния, и это тоже способствовало его развитию в приоритетную область исследования во многих странах. Сейчас этим занят весь цивилизованный мир.
Другое дело, что развитие любой технологии начинается со взрывного интереса, проходит пик чрезмерных ожиданий, а потом научное сообщество постепенно разочаровывается. А через некоторое время начинается новый подъем, связанный с переходом от фундаментальных исследований к практическому применению. Именно это сейчас и происходит с нанотехнологиями.
— О поддержке нанотехнологий на госуровне раньше всех заговорили в США. Это и спровоцировало взрывной интерес к новой отрасли?
— Да, правительство США в 2000 году положило начало бурному развитию этой науки, объявив о «Национальной нанотехнологической инициативе» — она привлекла почти миллиард долларов государственного и внебюджетного финансирования. Этот подход стал моделью: за 5 лет о таких планах развития заявили 50 стран.
— Значит, Россия, объявившая о приоритете нанотехнологий лишь в 2007-м, отстала?
— На самом деле у нас нанотехнологии включили в Федеральную программу «Исследование и разработки по приоритетным направлениям развития науки и техники» еще в 2002-м. А в 2007-м президент назвал нанотехнологии одним из приоритетных направлений и предложил учредить российскую корпорацию нанотехнологий, которая затем была преобразована в «Роснано». В 2008-м была принята программа по развитию наноиндустрии, но сейчас в связи с реорганизацией Минобрнауки многие из намеченных тогда проектов финансировать перестали. В прошлом году, по моим сведениям, у нас не было объявлено грантов в этой области. Ожидаем, что в этом году ситуация изменится.
— США потратили на нанотехнологии миллиарды. А на какое направление в первую очередь?
— На развитие материаловедения, и это не случайно. Развитие цивилизации неразрывно связано с совершенствованием технологии использования и получения материалов: человечество прошло через стадии использования бронзы, стали, полимерных соединений, композитов, а сейчас наступил этап, когда мы накопили знания в области наноматериалов. Благодаря этому целые сферы деятельности начинают кардинально меняться: электроника, энергетика, сельское хозяйство, медицина...
— Долгое время ученые не могли договориться о том, что считать наноматериалами. Да и работают они с веществом на атомарном уровне не первый десяток лет. Сейчас есть какая-то определенность в классификации?
— Наноматериалы — это объекты с размером в
диапазоне от 1 до 100 нанометров. Для наглядности: диаметр человеческого
волоса составляет примерно 80 тысяч нанометров, а поперечный срез
цепочки ДНК — 2 нанометра. Если чайка сядет на палубу авианосца, то он
погрузится в воду на 1 нанометр.
Теперь о свойствах наноматериалов. Свойства любого вещества определяет количество атомов, которое находится у него внутри и снаружи. Например, обычно на поверхности куска сахара находится примерно 1 атом из 10 млн, но, если размолоть кусочек в нанопыль, на поверхности окажется порядка 80 процентов всех составляющих его атомов. Колоссальное увеличение площади и количества находящихся на поверхности атомов — причина резкого изменения свойств. Атомы на поверхности связаны с меньшим количеством соседних атомов, чем те, что находятся внутри, поэтому обладают избыточной энергией. В итоге мы получаем вещество с принципиально новыми свойствами.
На самом деле люди это знали еще до появления науки, например когда сжигали уголь и получали сажу — она как раз укладывается в нанометровый диапазон. К слову, недавно была опубликована статья по дамасской стали. Оказалось, в ее составе есть углерод в виде углеродных нанотрубок — одного из самых известных и перспективных наноматериалов с потрясающими свойствами.
— И какие свойства проявляются у веществ в новом состоянии?
— Самые разные: увеличивается твердость в сочетании с высокой пластичностью, увеличивается предел текучести, меняется температура плавления… Так, железо, которое плавится при температуре 1,5 тысячи градусов, в наноразмерном состоянии имеет температуру плавления порядка 200–300 градусов.
— Тем не менее распространение получили углеродные наноматериалы. Чем они интересны, и почему российские ученые, вложившие в работу с ними немало сил, остались в стороне от нобелевских премий?
— В этой истории немало драматических страниц. Начать надо с открытия фуллерена. Это молекула углерода, представляющая собой полую замкнутую сферу. Она имеет форму усеченного икосаэдра — как футбольный мяч. Не случайно японский физик Эйдзи Осава догадался о существовании такой молекулы, наблюдая за игрой сына в футбол в 1970-м. Но статья об открытии была написана на японском, его в буквальном смысле не поняли.
В 1973-м существование необычной формы углерода впервые было подтверждено расчетами советских ученых из Института элементоорганических соединений РАН. Елена Гальперн, Игорь Станкевич и Дмитрий Бочвар исследовали полые углеродные замкнутые структуры, надеясь найти стабильную. Заядлый футболист Станкевич обратил внимание на замкнутую структуру из углерода С60, имеющую симметрию усеченного икосаэдра. По легенде, он принес в лабораторию футбольный мяч и сказал: «22 здоровых мужика часами пинают этот мяч. Молекула такой формы должна быть очень крепкой». В итоге ученые, не имея на тот момент подходящей ЭВМ, выполнили расчеты, предсказывающие электронную структуру новой молекулы. К сожалению, на открытие особо внимания не обратили, а синтезировать фуллерены не представлялось возможным.
— В итоге вся слава досталась экспериментаторам.
— Да, экспериментально материал был получен в 1985 году тремя англоязычными учеными: Робертом Кёрлом, Харольдом Крото и Ричардом Смолли. Они так спешили опубликовать статью, что не стали рассчитывать модель молекулы и вместо иллюстрации в журнале Nature поместили фотографию футбольного мяча. За открытие фуллеренов им в 1996-м присудили Нобелевскую премию. В нобелевской речи Крото упомянул, что молекула фуллерена «очаровала ученых, привела в восторг обывателей и придала свежее дыхание химии». Получение фуллеренов породило продолжающийся до сих пор бум углеродных наноструктур: полученные вскоре углеродные нанотрубки изменили мир.
— Словосочетание «углеродные нанотрубки» знакомо не только ученым. Многие слышали, что с их помощью обычные вещества приобретают сверхъестественные свойства. Но мало кто понимает, как они устроены.
Считается, что они открыты японским ученым Сумио Иджима в 1991-м. Хотя еще в далеком 1952-м советские ученые Л. Радушкевич и В. Лукьянович в «Журнале физической химии» поместили изображение углеродных нанотрубок. Так что нам есть чем гордиться.
— Тогда почему именно публикация 1991 года вызвала настоящий технологический бум?
— Была подготовлена почва: все уже ждали. Научное сообщество мгновенно подняло открытие нового наноматериала на небывалый уровень. Углеродные нанотрубки и в самом деле имеют уникальные свойства. Если рассмотреть механическую прочность, то благодаря углеродной связи между атомами, на земле нет материала прочнее. Более того, микроскопические добавки углеродных нанотрубок в другие материалы могут кардинально менять их свойства. Скажем, делать полимер электропроводящим или очень прочным и легким. Простой пример — совершенствование самолетов. Сейчас их фюзеляж сделан из металла. Чтобы уменьшить вес, можно использовать полимеры с добавками углеродных нанотрубок.
Появляются сообщения и об экзотических экспериментах. Так, в Университете Тренто (Италия) паукам скармливали углеродные нанотрубки, после чего, утверждают физики, те сплели сверхпрочную паутину — более крепкую, чем кевларовые волокна.
— Как дорого производство углеродных нанотрубок? Из чего их делают?
— Нанотрубки чаще всего получают на инертной подложке, способной выдерживать высокие температуры. Для этого углеродсодержащие соединения разлагают в присутствии наноразмерного катализатора в реакторе, разогретом до порядка 1000 градусов. Что касается источника, то им может быть любое химическое соединение, содержащее углерод. Чаще всего это метан, монооксид углерода или спирт. Но есть и пионерские работы по добыче углеродных наноматериалов из… воздуха. В 2015-м команда из Университета Дж. Вашингтона (США) брала атмосферный углекислый газ, из которого путем определенных манипуляций получала углеродные нановолокна.
— Над чем сейчас трудится ваша лаборатория в Сколтехе? Судя по заявленному оборудованию, она не должна уступать мировым университетам?
— Сегодня лаборатория наноматериалов входит в число лучших технологических лабораторий в мире. Одна из главных задач — прогнозирование поведения и свойств углеродных наноматериалов, в частности — углеродных нанотрубок. Лаборатория Сколтеха — одна из четырех в мире, где нанотрубки получают особым аэрозольным методом. Это занимает, как вы видели в начале, секунды и позволяет на выходе получать готовый продукт, не требующий очистки. Что касается целей, то сейчас мы занимаемся разными проектами, которые объединяет лишь общий базовый материал. Помимо гибкой и прозрачной электроники мы создали термоакустический ультразвуковой громкоговоритель, используя в качестве динамика свободно подвешенные прозрачные пленки из углеродных нанотрубок. Такие пленки могут использоваться и для получения высокочувствительных и быстродействующих фотодетекторов инфракрасного диапазона. Мы работаем и над созданием переключаемых лазеров. Отдельный проект — газовые сенсоры, так называемый электронный нос.
— И чем этот сенсор отличается от аналогов?
— Прежде всего чувствительностью. Сенсор на основе углеродных нанотрубок позволяет определить миллиардные доли вещества. Одна из задач — сделать его с помощью машинного обучения похожим на работу обонятельной системы млекопитающих, чтобы он в принципе мог чувствовать любые изменения. Помимо стандартного набора газов он может определить, что в помещении изменилась температура и влажность. Он будет помогать пожарным определять, что горит в помещении и можно ли туда входить.
— Давайте не о науке, а о наноиндустрии. Сколько сейчас в мире производят тех же уникальных нанотрубок?
— Есть два вида нанотрубок. Многослойные — их получить относительно просто в больших количествах. И однослойные — легкие, но более ценные. Если говорить о многослойных трубках, за год в мире их производится свыше 2 тысяч тонн. Безусловный лидер по производству многослойных нанотрубок Китай.
— Однослойные — другой материал?
— Да, и получить его гораздо сложнее, ведь он очень легкий: каждая углеродная нанотрубка состоит всего из одного атомного слоя углерода. На сегодня можно говорить о мировом производстве порядка 10 тонн в год. Лидером здесь является Россия. Продает этот материал, а также распространяет для исследований, отечественная компания OCSiAl в Новосибирске. В 2019-м она планируется запустить установку, которая позволит получать 50 тонн в год. Это довольно дорогой материал, поэтому его используют как добавку в небольших количествах: для изменения механических свойств в полимер добавляют от 0,01 до 1 процента. И это принципиально меняет свойства.
— Чиновники все чаще говорят, что в РФ нужно создавать наноиндустрию. О чем речь? Годятся ли для этой цели предприятия химической отрасли?
— В России, несмотря ни на что, сохранились сильные научные школы. Многие коллективы занимаются фундаментальным изучением наноматериалов. Появляются и новые центры, наподобие «Сколково», Иннополиса в Казани, нанотехнологического центра «ТехноСпарк» в Троицке и другие, где нанотехнологии являются основным объектом исследований. Но, к сожалению, существующая государственная структура не позволяет внедрить какие-то разработки.
Наша индустрия после распада СССР оказалась практически развалена, и она только кое-как встает на ноги. Где-то начинает появляться интерес к разработкам нанотехнологий, но самой наноиндустрии нет, она только формируется, а существующая промышленность нашими разработками еще не заинтересовалась.
— Можно назвать современную мекку нанотехнологий и создания наноматериалов?
— Одного центра нет. Но нанотехнологиями занимаются абсолютно все ведущие университеты мира — КалТех, Университет Техаса в Далласе, Хьюстонский университет, МТИ, Стэнфорд, Университет Токио, Цингуа, Университет Манчестера, Аалто, Пекинский университет... Китайцы, кстати, в отношении наноматериалов сегодня впереди планеты всей.
— За счет чего они вырвались?
— Экономика в Китае плановая, и если партия скажет, что необходимо внедрять материалы, то под это выделяют деньги и решение воплощают в жизнь. Этим летом я был на крупнейшей конференции по нанотрубкам и новым двухмерным материалам в Пекинском университете. Выступал один из чиновников КНР, который рассказал, что за два последних года они открыли 15 научно-технологических центров, которые не только получают и исследуют новый материал — графен, но уже и продают его.
— Какие еще новинки ожидают нас в ближайшем будущем благодаря развитию наноматериалов?
— Думаю, что в первую очередь мы увидим гибкую электронику, включая сенсоры касания, и облегченные детали в автомобилях. Но уже сегодня в магазине можно купить спортивные товары с применением наноматериалов: довольно легкие и прочные ракетки для тенниса и бадминтона, лыжи с покрытием из углеродных нанотрубок с супергидрофобными свойствами, велосипед весом в 1 килограмм. Кстати, именно на таком Флойд Лэндис не так давно выиграл велогонку «Тур де Франс».
— Насколько реальны заверения, что использование углеродных натотрубок позволит построить космический лифт, который резко удешевит доставку грузов на орбиту?
— Лет 5–10 назад НАСА потратило довольно много денег, чтобы узнать, возможно ли создание такого лифта. Понятно, что речь прежде всего о тросе, который должен покрыть всю длину от Земли до орбиты, быть прочным и одновременно легким, чтобы не порваться под собственным весом (стальной трос рвется при длине 10 километров.— «О»). Пока в лаборатории удалось получить углеродные нанотрубки порядка 1 метра в длину. Но, думаю, уже лет через 10–20 мы увидим материал, который станет потенциально годным для создания троса для космического лифта.
— Эти материалы используются для военных нужд?
— Ученые ведут исследования, но особо о них не рассказывают. Есть работы, которые показывают, что углеродные нанотрубки совместно с кевларом можно использовать для высокопрочных тканей для бронежилетов. В открытых источниках сообщалось, что новейший боевой вертолет Ми-28НМ получил композитные лопасти, созданные с применением нанотехнологий.
Также известно, что американская компания NanoScale Materials Inc. предложила продукт на основе нанотехнологий, который нейтрализует токсичные химикаты. Порошок состоит из активных наночастиц, которые связывают и дезактивируют около 24 боевых токсичных соединений.
Молоко из травы— Ждать ли открытия новых материалов? Сколь охотно дают деньги на такие исследования?
— С каждым годом получить грант на изучение новых материалов тяжелее. Все не так радужно, как думали вначале: от синтеза нового материала до его использования проходит порядка 20 лет. А чиновникам интересно получить выход немедленно, поэтому сейчас в основном финансируются медицинские или биологические тематики.
Пик исследования углеродных нанотрубок пришелся на 2014 год, затем количество публикаций и патентов снижается. Одна из причин — многие ученые, занимавшиеся углеродными нанотрубками, переключились на графен — новый перспективный материал. Как известно, за его открытие два наших ученых-физика — Андрей Гейм и Константин Новоселов, работающих в Университете Манчестера,— в 2010 году получили Нобелевскую премию по физике. Графен обладает огромной механической прочностью, у него высокая теплопроводность и электропроводность.
— У меня вопрос. То, о чем мы с вами говорим, это физика или уже давно химия? Вы сами как себя позиционируете как ученый?
— По образованию я химик, окончил химический факультет, стал кандидатом химических наук, но так получилось, что я всю жизнь работал с физиками. Последнее мое место до Сколтеха —Университет Аалто в Хельсинки на кафедре прикладной физики. Я химик, но занимаюсь процессами образования вещества, изучением физических свойств и применением полученных новых материалов.
— Почему вы решили стать ученым?
— Любовь к науке у меня проявилась благодаря химии. У нас был очень хороший учитель химии, а в школе — она в городе Междуреченске (Кемеровская область.— «О») — прекрасная лаборатория, которая позволяла любые эксперименты. Например, мы делали вытяжки из разных растений и воспроизводили лосьоны. А когда я поступал в Кемеровский госуниверситет на химфак, то у меня была тайная идея: я хотел создать молоко из травы, убрав из этого процесса корову.
— А физически это возможно?
— Возможно, это долгий биофизикохимический процесс, который до сих пор не был реализован. Но теперь, с развитием нанотехнологий, можно было бы попробовать…
Беседовала Елена Кудрявцева
Blog Post: "Я хотел создать молоко из травы, убрав из этого процесса корову"
"Я хотел создать молоко из травы, убрав из этого процесса корову"
«Я хотел создать молоко из травы, убрав из этого процесса корову»