Процессы, проходящие в недрах Земли в областях активного вулканизма и сейсмичности, исследованы даже менее детально, чем космос или глубины океана. Их можно установить только при изучении обломков глубинных пород, вынесенных лавами при вулканических извержениях. 

Изучая ксенолиты Авачинского вулкана, новосибирские ученые существенно продвинулись в понимании физики процессов в литосфере. В ходе лабораторного эксперимента, который совместно провели ученые Института геологии и минералогии им. В.С.Соболева СО РАН (ИГМ СО РАН), Института теоретической и прикладной механики СО РАН (ИТПМ СО РАН), Института ядерной физики им. Г.И.Будкера СО РАН (ИЯФ СО РАН), Новосибирского государственного университета (НГУ) и Новосибирского государственного технического университета (НГТУ), были созданы условия, похожие на те, что происходят внутри Земли во время вулканической активности, сообщает пресс-служба ИЯФ СО РАН. Экспериментальные результаты хорошо согласуются с данными численного моделирования процесса формирования месторождений во время сейсмических процессов в мантии под вулканами. Результаты опубликованы в журнале Geochemistry International.

Сложность изучения состава глубоких недр Земли в том, что существует мало инструментов, позволяющих заглянуть вглубь и подтвердить или опровергнуть корректность той или иной гипотезы.

Часто исследователи могут судить об этих процессах лишь по косвенным признакам, например, по звуковым волнам, которые записывают сейсмологи. Ксенолиты (то есть обломки горной породы, захваченные магмой и вынесенные на поверхность во время извержения вулкана) являются одним из наиболее важных источников информации о минеральном составе и структуре земной коры и верхней мантии. В исследовании группы новосибирских ученых отправной точкой стала такая неприметная, на первый взгляд, деталь, как трещинные полости внутри ксенолита.

Объект изучения

Для эксперимента использовались типичные образцы из коллекции ксенолитов, собранных на поверхности Авачинской сопки, действующего вулкана на Камчатке. Эти обломки горной породы оказались на поверхности Земли в результате катастрофических выбросов.

«Представляете, – говорит доктор геолого-минералогических наук, главный научный сотрудник ИГМ СО РАН, профессор кафедры ГГФ НГУ Виктор Шарапов, – с глубины 70-40 км на поверхность Земли выносятся кристаллические обломки пород, в которых есть открытые полости, в них растут и растворяются кристаллы. Почему так происходит? Согласно теории Д. С. Кожинского, из глубин верхней мантии Земли к ее поверхности двигаются не только потоки тепла, но и потоки жидких и газообразных флюидов. В результате в сейсмически активных горизонтах литосферы Земли одни элементы замещаются другими, и первозданная картина распределения минералов заменяется другой, потому что происходит растворение минералов флюидами в одном месте и отложение растворенных веществ в другом».

Сотрудники ИТПМ СО РАН Анатолий Черепанов и Вера Черепанова создали математическую модель этих процессов и написали на ее основе специальный численный код. Экспериментальная проверка предложенной модели была проведена в совместной Учебно-научной лаборатории электронно-лучевой сварки ИЯФ СО РАН и НГУ.

Как шел эксперимент

В ходе эксперимента с помощью мощного электронного пучка ученые «расплавили» образец ксенолита. «Наша установка формирует сфокусированный пучок электронов, – объясняет научный сотрудник ИЯФ СО РАН Юрий Семенов. – При этом для электронов с энергией 60 кэВ можно создать плотность потока мощности порядка 10 МВт/см2 при диаметре пучка около 1 мм. Для снижения прямого попадания паров и капель обрабатываемых материалов на катод и высоковольтные элементы в нашей установке перед попаданием на материал электронный пучок совершает поворот на 270О, что существенно повышает надёжность и ресурс источника электронов».

Для облучения ксенолитов был выбран режим плавления, при котором пучок электронов диаметром 3-4 сантиметра воздействует на объект в течение 45 минут. Температура плавления на поверхности составляла примерно 2500 градусов. «Граница плавления медленно опускается внутрь, – поясняет Виктор Шарапов, – а на поверхности кипит расплав, так же, как лава кипит на вулкане, только температура в экспериментах примерно в два раза выше, чем в лаве самого горячего Гавайского вулкана». Это позволило получить потоки газов, которые фильтровались по трещинам, растворяли минералы, при этом на холодной поверхности формировались конденсаты. Полученная в эксперименте скорость растворения хорошо согласуется с оценками в рамках математической модели. В условиях лаборатории этот процесс занимает менее 45 минут, а в природе – несколько дней, во время сильных землетрясений.

В чем польза

Важность исследования связана с необходимостью совершенствования прогноза времени и места возможной сейсмической активности, чтобы минимизировать опасности для населения этих районов. Кроме того, исследование дает дополнительную информацию об образовании рудных месторождений.  

Месторождения – это реализация условий, когда обычные по составу потоки магматических газов или растворов отлагают аномально большие количества рассеянных элементов на так называемых геохимических барьерах. Для того чтобы разобраться в механике этих процессов, ученые должны построить корректные физические модели, численно описать химические реакции, которые протекают в этом случае. Необходимо знать, какие термодинамические факторы приводят к тому, что в конкретной точке земной коры происходит концентрация этих элементов. Эксплуатация нефтяных скважин и месторождений сопровождается похожими процессами – растворения, переноса и отложения веществ. Модель, созданная группой ученых, дает важную дополнительную информацию о том, как проходит перенос тепла и массы при наличии в верхней мантии потоков магматических и метаморфических газов и рассолов.
 

Источники

В ИЯФ СО РАН смоделировали вулканические процессы
Arhano.ru, 24/05/2017
В ИЯФ СО РАН смоделировали вулканические процессы
Научная Россия (scientificrussia.ru), 24/05/2017
Гиперболоид - фантастика и реальность
Экономика и ТЭК России (tek-russia.com), 25/10/2017

Похожие новости

  • 29/01/2020

    Интервью: что в Новосибирске сделают в рамках проекта СКИФ в 2020 году

    ​Об итогах 2019 года и основных задачах реализации проекта синхротрона СКИФ в 2020 году рассказал РБК Новосибирск заместитель руководителя проектного офиса ЦКП «СКИФ» ИК СО РАН Яков Ракшун. Что удалось добиться в работе над проектом синхротрона СКИФ в 2019 году? — Была проделана большая работа, которая закончилась выходом в конце 2019 года постановления правительства России о федеральной адресной инвестиционной программе, в которой определен предельный объем бюджетного финансирования проекта — 37,1 миллиарда рублей и сроки исполнения работ.
    533
  • 24/04/2020

    НГУ провел совместное заседание естественнонаучных секций МНСК в режиме онлайн

    ​​Организаторы объединенной секции 58-й Международной научной студенческой конференции, посвященной физическим методам исследования и химии твердого тела, впервые провели заседания в дистанционном формате (в программе Zoom).
    712
  • 16/07/2020

    Сибирские ученые получили топологические изоляторы на основе селенида висмута новыми способами

    ​​​​​Тонкие пленки селенида висмута получили двумя методами: вырастив их на подложках из слюды и электрохимически расщепив объемные кристаллы Bi2Se3, причем ученые добились формирования рекордно больших площадей образцов тонких пленок.
    795
  • 04/06/2020

    Эксперимент геологов и физиков внес вклад в понимание природы железных метеоритов

    Научная группа Института физики высоких давлений им. Л. Ф. Верещагина РАН (ИФВД РАН), Института геологии и минералогии им. В. С. Соболева СО РАН (ИГМ СО РАН), Новосибирского государственного университета (НГУ) совместно со специалистами Института ядерной физики им.
    384
  • 26/02/2020

    Ученые ищут микрочастицы Тунгусского метеорита в озерах

    Все предположения о природе Тунгусского метеорита или Тунгусского космического тела (ТКТ), взорвавшегося и упавшего в Восточной Сибири в 1908 г. до сих пор остаются только гипотезами. Ученые Института ядерной физики им.
    610
  • 03/09/2017

    Дмитрий Маркович: Масштабы молодёжи нас устраивают

    ​2017 год стал для Института теплофизики СО РАН годом перемен — здесь впервые за 20 лет сменился директор. Коллектив одного из крупнейших академических институтов энергетического профиля России возглавил доктор физико-математических наук, член-корреспондент РАН Дмитрий Маркович.
    2331
  • 20/06/2016

    В Институте ядерной физики СО РАН состоится 30-е международное совещание по физике токамаков

    С 21 по 25 июня в Институте ядерной физики им. Г.И.Будкера СО РАН (ИЯФ СО РАН) пройдет 30-е международное совещание по физике токамаков (The International Tokamak Physics Activity, ITPA). Мероприятия этой серии проводятся коллаборацией ИТЭР (ITER, International Thermonuclear Experimental Reactor) дважды в год – во Франции, где сооружается установка, и в одной из стран-участниц проекта.
    3639
  • 02/04/2019

    Гранты РНФ-2019: победители конкурсов на продление проектов 2016 года и конкурса для отдельных научных групп 2019 года

    ​Российский научный фонд объявил победителей двух конкурсов: на продление проектов, реализация которых завершилась в 2018 году, и конкурса для отдельных научных групп с началом финансирования в 2019 году.
    3118
  • 20/06/2017

    Международная выставка «НТИ ЭКСПО» в Новосибирске

    ​​​Уникальная международная выставка достижений технологического развития "НТИ ЭКСПО" пройдет в рамках V Международного форума технологического развития "Технопром-2017" 20-22 июня в Новосибирске при поддержке правительства РФ, коллегии ВПК, Минпромторга России, Минэкономразвития России, МИДа РФ, правительства Новосибирской области.
    3814
  • 23/05/2017

    Новосибирские журналисты стали свидетелями уникального эксперимента

    ​Когда-то Камчатский полуостров был плоской равниной, но в плейстоцене произошел взрыв, благодаря которому образовались вулканы, ныне занимающие 40% этой территории. А около 4 тысяч лет назад лавы двух мощных извержений вынесли на поверхность массу обломков глубинных пород - ксенолитов, изучение которых позволяет получить информацию о процессах, происходящих в недрах Земли.
    1283