В стакан с песком мы кольцами, одно поверх другого, наливаем клей, он застывает, затем снова и снова льем клей и подсыпаем песку... Потом отряхиваем лишнее и получаем нечто вроде трубы. Заменим песок специально подготовленным порошком из металла, керамики или композита, струйку клея - лучом лазера или потоком электронов, а собственную руку - системами точного, до микрон, позиционирования и интеллектуального управления. И получим одну из самых совершенных аддитивных ("добавляющих") технологий. Таким примером иллюстрирует общий принцип 3D-печати директор Института химии твердого тела и механохимии СО РАН академик Николай Захарович Ляхов.

 - Перечень аддитивных технологий начинается с такого процесса, как непрерывное формование: промышленный экструдер устроен по тому же принципу, что и мясорубка. Немногим сложнее инжекционное литье, при котором материал под высоким давлением подается в форму. Так изготавливают, например, пластиковые бутылочные пробки. К более высоким технологиям относятся 2D- и 3D- печать. Первая из них достаточно хорошо освоена в микроэлектронике: блоки и печатные платы все чаще изготавливают не травлением, а нанесением токопроводящих чернил специальным принтером. Жесткой грани между 2D- и 3D-методами нет - некоторые электронные детали выпускают "с выпуклостями" за счет неоднократного прохождения печатающей головки по одному и тому же рисунку.

Но настоящую промышленную революцию сулит развитие 3D-печати, хотя слово "печать" не очень правильно отражает процесс формирования сложных трехмерных объектов. Термин "выращивание", непривычный для промышленности, подходит лучше. По информации, озвученной директором Конструкторско-технологического института научного приборостроения (КТИ НП) СО РАН доктором технических наук Юрием Васильевичем Чугуем, на наших глазах появляется отрасль производства с перспективой ежегодного роста рынка в 27%. И этот рынок находится в фазе становления. 3D-машины сегодня в мире производят немногим более десятка компаний. Отечественных среди них пока нет, но недавно во Всероссийском институте авиационных материалов (ВИАМ) прошло совещание с участием вице-премьера Дмитрия Олеговича Рогозина, на котором ученым была поставлена задача: не допустить отставания в этой области, разработать собственные технологии 3D-выращивания. Несмотря на кризисные явления в экономике, государство готово выделить на эти исследования и разработки определенные ресурсы.

Зарубежные образцы показывают, с одной стороны, истинную революционность нового метода, а с другой - весь спектр проблем, стоящих на его пути к массовым, экономически рентабельным, производствам. Действующие промышленные установки дороги (от 500 000 до миллиона евро) и малопроизводительны (скорость наращивания от 5 до, максимум, 70 кубических сантиметров в час). Ограничены и размеры выпускаемых изделий: аппараты выше человеческого роста производят детали размером с кофейную чашечку. Поэтому на сегодня в мире действует всего около тысячи крупных установок, способных работать с металлами и сплавами.

 Демонстрационные 3D-машины, которые экспонируются на выставках, удивляют посетителей сравнительно быстрым и точным формованием пластмассовых фигурок. Но настоящая революция начнется только тогда, когда появятся аддитивные технологии, позволяющие работать с металлами, керамикой, композитами. У сегодняшних 3D-установок есть и другие недостатки. Это несоответствие свойств готового изделия ожидаемым для используемого материала (прочность, пористость, долговечность). Далее, пока что налицо низкая адаптивность технологии: при замене порошка требуется технологическая поддержка, возникает зависимость от поставщиков сырья. Наконец, заявленный промышленный переворот тормозит отсутствие нормативной документации на "выращенные" изделия (необходимы дорогостоящие процедуры сертификации). Тем не менее, я встречал весьма оптимистические прогнозы. Если в 2013 году производительность 3D-машины, работающей с порошками металлов, составляла 10 кубических сантиметров в час при стоимости порошка около 90 евро за килограмм, то через 10 лет ожидается изменение этих показателей до 80 см3 в час и 30 евро.

По сути, любая аддитивная технология сегодня формируется из четырех блоков. Перво-наперво, требуется сырье принципиально иного уровня и качества, нежели у традиционных производств. Как уже указывалось, это порошки, состоящие из максимально однородных наночастиц, металлических, неметаллических и композитных. Второй блок - разработка и изготовление высококонцентрированных источников энергии, каждый из которых должен соответствовать той или иной задаче: вряд ли здесь возможны универсальные решения. Третье - это система интеллектуального управления всем комплексом. В ней заложены размеры, форма и параметры готового изделия, скорость и ход всех процессов, от подачи порошка до финальной обработки поверхности. Наконец, четвертый блок представляет из себя систему позиционирования и координатной развертки. Без него процесс "выращивания" будет неточным в пространстве и времени. Чтобы создать российскую промышленную 3D-машину, необходимо на собственной базе построить все четыре блока. Было бы бессмысленно, например, освоить производство порошков и источников облучения, отработать позиционирование, но оказаться в зависимости от импортных программ.

В Сибири созданы хорошие заделы по всем четырем направлениям. Институт химии твердого тела и механохимии СО РАН традиционно занимается получением и изучением однородных порошковых материалов. Термическими, механическими и химическими методами наши специалисты добиваются и предельного уменьшения размеров частиц, и их "одинаковости". На микрофотографиях хорошо видна разница, к примеру, между состоянием вольфрамового порошка до и после плазменной обработки. Мы видим потенциально реализуемым совмещение в одном процессе синтеза материала и изготовления детали с помощью аддитивных технологий: говоря проще, "на одном заводе" возможно готовить и порошок, и изделия из него, снижая накладные расходы. Назову еще одну организацию-лидера: томский Институт физики прочности и материаловедения СО РАН. Там реализуется новая концепция аддитивных технологий, суть которой - опираться не на исходный материал и его свойства, а отталкиваться от требований к конечному продукту. Это позволит перейти от конструирования изделий и узлов с однородной структурой и фазовым составом на принципиально новый уровень: получать на выходе продукцию любого размера и формы со сложной структурой, изменяющимся фазовым и элементным составом и физико-механическими свойствами. Это новый горизонт, к которому мы должны стремиться в своих технических решениях уже в самом начале проекта.

Примером может служить искусственная человеческая кость. Сегодня готовые керамические фрагменты скелета "подгоняются" под пациентов. Потенциал 3D-технологий таков, что завтра мы сможем изготавливать "запчасти" под размеры и формы конкретного организма, практически неотличимые от родных (персонифицированная медицина!). Вспомним, как выглядит кость в разрезе: теперь станет возможным воссоздать и ее сложнейшую структуру, и физические свойства. "Начинается новое материаловедение, новая химия и физика", - убежден директор ИФПМ СО РАН член-корреспондент РАН Сергей Григорьевич Псахье.

В области создания систем точного позиционирования одним из лидеров признан КТИ НП СО РАН. Сегодня, к примеру, его специалисты доводят до готовности систему контроля геометрических параметров центрального зеркала космического телескопа в рамках национального проекта "Миллиметрон". Здесь же разработан лазерный технологический комплекс для измерения геометрии и обработки изделий с произвольной формой 3D- поверхности (абляция, резка, сварка). Это уже совсем близко к компонентам аддитивных технологий. По ряду проектов партнером КТИ НП выступает Институт автоматики и электрометрии СО РАН. Напомню, что в его стенах был создан точный трехмерный симулятор стыковки для российских космических экипажей.

Некоторые институты Новосибирского и Томского научного центров готовы работать не по одному, а по двум-трем блокам аддитивных технологий. И сложнейшие программистские решения, и источники концентрированной энергии создаются в разных коллективах. На заседании президиума Сибирского отделения, где обсуждались наши возможности, член-корреспондент РАН Павел Владимирович Логачев из Института ядерной физики им. Г.И. Будкера СО РАН напомнил о созданной там серии электронно-лучевых пушек, применяющихся на оборонных предприятиях. Но ИЯФ в потенциально очень перспективном межинститутском проекте может выступить партнером и по другим направлениям, равно как ИТПМ СО РАН), Институт теоретической и прикладной механики им. С.А. Христиановича, томский ИФПМ и другие организации.

Вот и прозвучало слово "проект". На самом деле, силами одного, двух, трех институтов столь сложная и актуальная задача быстро и полноценно не решается - необходим другой уровень кооперации и ресурсного обеспечения. Следует говорить о новой федеральной комплексной программе научно-исследовательских и опытно-конструкторских работ, не менее масштабной, чем уже утвержденные в РАН и ФАНО. План действий, "дорожная карта" последовательных усилий наших институтов требуется уже сегодня. Не будем забывать и о потенциале резидентов технопарка новосибирского Академгородка и томской технологическо-внедренческой зоны, на базе которой вырастает комплекс "ИННО Томск".

 Ключевым организационным решением могло бы стать создание Центра коллективного пользования СО РАН по отработке экспериментальных технологий производства и сертификации порошковых материалов. Несмотря на такое название, его функции должны быть шире: ведь необходима подготовка научных и инженерных кадров в этой области. На это могут быть ориентированы НГУ, НГТУ, НОК "Наносистемы и современные материалы" при Новосибирском университете, исследовательские университеты Томска.

Я согласен с мнением академика Николая Леонтьевича Добрецова: тематика российских аддитивных технологий и предлагаемая сибирскими учеными программа их создания должны быть поддержаны на самом высоком государственном уровне. Президент России поручил Академии наук подготовить концептуальные основы Национальной технологической инициативы. Если в этих документах не будет (как особо приоритетного, подчеркну!) блока по основам 3D-индустрии, то снова будут упущены время и возможности, снова наша страна окажется "отставшей навсегда" в еще одной важнейшей технологической отрасли. "Наука в Сибири" Фото: Юлии Поздняковой, из презентации Николая Ляхова

Источники

Что вырастим, то вырастим
Наука в Сибири (sbras.info), 19/03/2015

Похожие новости

  • 20/06/2017

    Международная выставка «НТИ ЭКСПО» в Новосибирске

    ​​​Уникальная международная выставка достижений технологического развития "НТИ ЭКСПО" пройдет в рамках V Международного форума технологического развития "Технопром-2017" 20-22 июня в Новосибирске при поддержке правительства РФ, коллегии ВПК, Минпромторга России, Минэкономразвития России, МИДа РФ, правительства Новосибирской области.
    2084
  • 28/01/2016

    Программа празднования Дней российской науки в СО РАН

    ​​8 февраля — День российской науки. Во всех научных центрах Сибирского отделения РАН с 8 по 12 февраля состоятся праздничные мероприятия. В Дни открытых дверей в институтах можно будет посетить научные лаборатории, увидеть уникальное оборудование и приборы, послушать лекции по актуальным вопросам науки, побеседовать с ведущими учеными, посмотреть фильмы о науке.
    3134
  • 04/04/2018

    Подведены итоги оценки результативности научных организаций

    454 организации разделили по трем категориям. Чем отличились сельскохозяйственные институты, чему Минздраву стоит поучиться у ФАНО и в каком регионе больше всего институтов из третьей категории, читайте в материале Indicator.
    1575
  • 11/03/2015

    Заседание в Президиуме СО РАН, состоявшееся 19 февраля, было посвящено теме аддитивных технологий

    ​Помните крылатую фразу незабываемого советского генсека Брежнева: "Нам раскачиваться некогда - делом надо заниматься!". По иронии судьбы, именно в ту эпоху "раскачивание" вошло в привычку.
    751
  • 16/03/2017

    Научный прорыв: аддитивные технологии для авиации и Арктики

    ​Авиационный - не значит предназначенный исключительно для авиации. Эффективные и стойкие, универсальные и экономичные материалы нужны и в воздухе, и на земле, и на море. Особенно если земля покрыта снегом, а море - льдом.
    1886
  • 05/05/2016

    Сибирские ученые - победители конкурса 2016 года по государственной поддержке ведущих научных школ

    ​Совет по грантам Президента РФ для государственной поддержки молодых российских ученых и по государственной поддержке ведущих научных школ Российской Федерации отметил сибирских ученых. Математика и механика.
    2535
  • 30/01/2015

    Программа празднования Дней российской науки

    Сибирское отделение РАН и научные организации, подведомственные ФАНО России, со 2 по 8 февраля проводят праздничные мероприятия, посвященные Дню российской науки. В Дни открытых дверей в институтах будут показаны научные лаборатории, уникальное оборудование и приборы, пройдут лекции по актуальным вопросам науки, беседы с ведущими учеными, фильмы о науке.
    1603
  • 13/01/2017

    Кто станет преемником Александра Асеева?

    Имя нового председателя Сибирского отделения Российской академии наук станет известно уже в марте этого года. Но предвыборный процесс уже вступил в активную фазу. На текущий момент публично выдвинуты три кандидата.
    2181
  • 27/04/2016

    Сибиряки - победители конкурса на получение стипендии Президента РФ для молодых ученых и аспирантов

    Среди получивших поддержку — сибирские исследователи, работающие в области энергоэффективности и энергосбережения, ядерных, космических, медицинских и стратегических информационных технологий.    Направление модернизации — энергоэффективность и энергосбережение, в том числе вопросы разработки новых видов топлива: Адонин Сергей Александрович — Институт неорганической химии им.
    3382
  • 27/07/2018

    Чем удивит участников «Технопром-2018»?

    ​Через месяц в Новосибирске стартует VI международный форум «Технопром». Одна из масштабных дискуссионных площадок региона за последнее время успела сменить куратора, оператора и даже даты проведения. Вместе с тем организаторы уверяют, что подходы к подготовке форума остались прежними, разве что работа, по понятным причинам, ведется в сумасшедшем ритме — опоздать с разработкой проекта «Академгородок 2.
    369