На Большом адронном коллайдере (БАК) закончились технические работы и модернизация — он возобновил сбор данных, в трех экспериментах на коллайдере участвуют исследователи НГУ и ИЯФ СО РАН

Планируемая остановка на технические работы на БАК случается в начале каждого года. Как сообщил старший преподаватель кафедры физики ускорителей ФФ НГУ и старший научный сотрудник лаборатории физики тяжелых кварков в адронных взаимодействиях МЦФЭЧиА ФФ, старший научный сотрудник ИЯФ СО РАН Павел Кроковный, в этом году остановка была продолжительная:

— Заменили 1232 магнита и ловушки для сброса пучков — это специальные места, куда можно направить пучок протонов, чтобы он поглотился. Просто так в произвольное место направить пучок нельзя — слишком большая мощность в нем запасена. Как ни странно, но именно это ограничивало максимальные токи в SPS (Super Proton Synchrotron), он используется для ускорения протонов с 26 до 450 ГэВ. Эксперименты также используют это время для своих работ, например, на детекторе CMS (Compact Muon Solenoid) был установлен новый трековый детектор.

На данный момент исследователи совместных лабораторий НГУ и ИЯФ СО РАН участвуют в трех экспериментах на БАК: ATLAS, CMS и LHCb. Интенсивность набора данных (светимость) на ATLAS и CMS должна увеличиться, для LHCb светимость ограничена системой сбора данных детектора.

Планируется продолжение работы БАК до ноября, затем последует технический перерыв и работы до конца 2018. Далее в планах — двухлетний перерыв на глубокую модернизацию коллайдера и детекторов.

Павел Кроковный напомнил, что эксперименты на БАК набирают данные с 2009 года.

В 2009–2012 годах (run 1) был обнаружен бозон Хиггса. В 2013–2015 велась модернизация коллайдера для работы на энергии 13 ТэВ. В 2016–2018 годах (run 2) ведется набор данных на 13 ТэВ.

— Пока все измерения не противоречат Стандартной Модели физики элементарных частиц, хотя появляются указания на возможные отклонения от Стандартной Модели. Требуется набрать и обработать больше данных, чтобы определить значимы эти отклонения или нет, — резюмировал Павел Кроковный.

Источники

Большой адронный коллайдер возобновил сбор данных после зимней остановки
Новосибирский государственный университет (nsu.ru), 24/05/2017

Похожие новости

  • 03/09/2018

    На пути к бор-нейтронозахватной терапии

    В проект «Академгородок 2.0» вошли сразу две заявки, касающиеся бор-нейтронозахватной терапии — эффективного метода борьбы с неизлечимыми онкологическими заболеваниями. О мерах, которые предпринимаются для того, чтобы проект поскорее воплотился в жизнь, и о том, какие на этом пути есть препятствия, говорили на круглом столе на VI Международном форуме технологического развития и выставке «Технопром».
    745
  • 12/05/2016

    Ученые представили результаты анализа всех доступных данных по измерению осцилляций Bs-мезонов

    Коллектив ученых из эксперимента LHCb на Большом адронном коллайдере, в состав которого входит группа из Новосибирского государственного университета и Института ядерной физики СО РАН, выяснил, с какой вероятностью B0s-мезон, состоящий из прелестного антикварка и странного кварка, превращается в свою античастицу и наоборот.
    1323
  • 20/06/2016

    В Институте ядерной физики СО РАН состоится 30-е международное совещание по физике токамаков

    С 21 по 25 июня в Институте ядерной физики им. Г.И.Будкера СО РАН (ИЯФ СО РАН) пройдет 30-е международное совещание по физике токамаков (The International Tokamak Physics Activity, ITPA). Мероприятия этой серии проводятся коллаборацией ИТЭР (ITER, International Thermonuclear Experimental Reactor) дважды в год – во Франции, где сооружается установка, и в одной из стран-участниц проекта.
    2622
  • 28/02/2019

    В ЦЕРН обнаружили новую частицу, которая уточнит кварковую модель

    ​Коллаборация LHCb (CERN, Европейская организация по ядерным исследованиям), в которую входят Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) и Новосибирский государственный университет (НГУ), объявила об открытии нового состояния c-кварка и анти c-кварка – частицы ψ3(1D).
    230
  • 26/08/2016

    Ученые СО РАН представили результаты работы на Международной конференции в области высоких энергий

    ​Специалисты Новосибирского государственного университета и Института ядерной физики им. Г. И. Будкера СО РАН приняли участие в 38-й Международной конференции в области физики высоких энергий в Чикаго (ICHEP-2016).
    2517
  • 20/03/2019

    Время научной дерзости: зачем ученые ищут Новую физику

    В конце февраля этого года мир узнал, что коллаборация LHCb (CERN), в которую входит более десяти российских научных организаций, в том числе Институт теоретической и экспериментальной физики имени А.
    100
  • 02/12/2016

    Ученые обнаружили неожиданный эффект в экспериментах с терагерцовым излучением

    ​Российско-немецкая группа исследователей изучает свойства полупроводниковых структур под воздействием электромагнитного излучения терагерцового диапазона.  Учёные исследовали образцы легированного сурьмой германия на лазерах на свободных электронах в Новосибирске и Дрездене.
    1484
  • 02/02/2017

    Эксперимент LHCb получил первое указание на нарушение симметрии между материей и антиматерией в распадах барионов

    ​Участники эксперимента LHCb на Большом адронном коллайдере (БАК), в том числе сотрудники лаборатории физики тяжелых кварков в адронных взаимодействиях Новосибирского государственного университета, получили первое указание на нарушение симметрии между материей и антиматерией в распадах барионов.
    903
  • 07/03/2016

    В ИЯФ СО РАН разработали ключевые компоненты нового коллайдера

    ​ ​В Институте ядерной физики им. Г.И. Будкера СО РАН созданы вакуумные камеры, корректирующие магниты, электроника регистрации и программное обеспечение для установки SuperKEKB, которая монтируется в японской Лаборатории физики высоких энергий (КЕК) в Цукубе.
    2193
  • 14/04/2017

    На коллайдер SuperKEKb в Японии установили детектор Belle II с российским оборудованием

    В ускорительном центре КЕК (Цукуба, Япония) завершена установка детектора Belle II в место встречи пучков коллайдера SuperKEKB, сообщает пресс-служба КЕК. Общий вес детектора превышает 1400 тонн. Одна из его ключевых систем – 40-тонный электромагнитный калориметр на основе кристаллов йодистого цезия – был создан и разработан при определяющем участии Института ядерной физики им.
    1185