На VIII Международном форуме технологического развития «Технопром-2021» сибирские ученые и промышленники обсудили перспективы применения водорода, энергетическую эффективность его производства и попытались ответить на вопрос: почему водородная энергетика до сих пор не получила широкого распространения? 

«Экологические вызовы и исчерпание природных ресурсов требуют новых путей технологического развития. Один из них — водород. Его можно сжигать в непосредственно модифицированных газовых турбинах. Из топливных элементов извлекается электрическая энергия. Однако есть ряд проблем. Например, при использовании топливных элементов в летательном аппарате на высоте более девяти километров будет возникать неблагоприятное влияние воды. При сжигании водорода появляются оксиды азота. Электрохимические источники тока на сегодняшний день требуют большого количества оборудования. Тем не менее применение водородсодержащих смесей, в частности твердооксидных топливных элементов, в сложных циклах позволяет получить достаточно высокий КПД», — обозначил тематику дискуссии главный специалист АО «Объединенная двигателестроительная корпорация» Марат Джаудатович Гамируллин.

Топливные элементы как источник энергии

Директор Института теплофизики им. С. С. Кутателадзе СО РАН академик Дмитрий Маркович Маркович рассказал про топливные элементы как источники энергии. «В мире начинает набирать обороты индустрия водородных двигателей и заправочных станций. Переход на водородное топливо, конечно, не решит проблему глобального потепления, но локальную экологию в мегаполисах точно поправит. И здесь будет очевидная конкуренция между чисто электрическим и водородным транспортом. В ближайшей и отдаленной перспективе они будут постепенно вытеснять традиционный», — отметил ученый.

mark.jpg

Академик рассказал про серию совместных работ ИТ СО РАН и израильской компании GenCell, которая специализируется на водородных топливных элементах небольшой мощности (пять киловатт). Ученые ИТ СО РАН занимались задачами тепломассообмена: от внутреннего теплообмена до создания цифрового двойника . Практически все узлы этих топливных элементов были разработаны при научном сопровождении новосибирского института.

«Сейчас есть договоренность с этой компанией, что при нашем участии в России эти топливные элементы будут адаптироваться для арктических условий, низких температур (пока они предназначены для условий до -20 °C). Мы почти договорились с одним из новосибирских предприятий из системы «Росатома», что они будут производить такие топливные элементы по лицензии, с нашим научным сопровождением», — сказал Дмитрий Маркович.

Другая идея ученых — использовать не чистый водород, который сложно транспортировать, а генератор водорода из аммиака путем крекинга. Аммиак можно доставлять в любые точки и уже там перерабатывать в водород.

Также в ИТ СО РАН разработаны воздушно-алюминиевые топливные элементы. Ученые нашли рецепты ингибиторов коррозии в электролите и оптимальный сплав алюминия с различными добавками. Лабораторный образец уже готов и находится в ожидании инвестора.

Недавно ученые ИТ СО РАН закончили работу по трехгодичному гранту с китайскими партнерами, в рамках которого создавались подходы по малоэмиссионному сжиганию и синтезу газов применительно к энергетическим газотурбинным установкам.

«Конечно, наши подходы не могут быть напрямую реализованы для нужд авиации и большой энергетики, но они могут быть использованы для создания новых поколений топливных элементов для широкого спектра применений», — заключил академик.

Каталитические технологии генерации и хранения водорода и синтетических топлив

Руководитель отдела гетерогенного катализа ФИЦ «Институт катализа им. Г. К. Борескова СО РАН» доктор химических наук Павел Валерьевич Снытников рассказал про каталитические технологии генерации и хранения водорода и синтетических топлив.

snyt.jpg

«На мой взгляд, водород не стоит рассматривать как топливо. Это все-таки энергоноситель, который позволяет более длительно аккумулировать ту энергию, которая получается в возобновляемых источниках энергии», — подчеркнул ученый.

По словам Павла Снытникова, сохранять водород и использовать его длительное время помогут химические методы, которые будут переводить его в различное синтетическое, возобновляемое сырье, в том числе спирты, эфиры и углеводороды. Эти технологии уже достаточно хорошо реализованы в промышленности. Неплохим источником такого водорода может стать аммиак. В России аммиачное производство составляет более 20 миллионов тонн. Технологии отлажены и могут масштабироваться.

Ученый рассказал про технологии, которые разрабатываются в ИК СО РАН. Так, в институте модернизируется криогенное хранение водорода. При сжижении в смести орто- и пароводорода происходит естественное выкипание водорода, потери составляют до 20 % в день. Но если каталитически перевести ортоводород в пароводород, то возможно длительное хранение. Эта технология была реализована в СССР, затем потерялась, а в последние годы ее воссоздали в ИК СО РАН.

«Мы сделали опытный лабораторный стенд. Создана технологическая линия получения катализатора мощностью до пяти тонн в год. В ближайшее время институт готов по этой технологии поставлять катализатор заказчику, чтобы производство такого криогенного водорода можно было наладить в России», — сказал Павел Снытников.

В ИК СО РАН разрабатываются каталитические методы получения водорода и водородсодержащих смесей. Так, перспективно получать водородсодержащий газ напрямую из углеродсодержащих компонентов (в первую очередь — из ископаемого сырья).

«Мы можем делать соединение для хранения водорода синтетически, используя электролизный водород, технологию улавливания углекислого газа. А затем получать бензин-дизель, синтетический метан, метанол, метиловый эфир. Эта технология позволяет задействовать уже готовую инфраструктуру по снабжению углеводородными топливами и получать водород там, где это необходимо. Она позволяет решить давнюю проблему курицы и яйца: чтобы водородная технология пошла в массы, нужна развитая инфраструктура, а для последней необходимо достаточное количество энергоустановок, работающих на водородных топливных элементах», — отметил ученый.​

Недавно исследователи ИК СО РАН выиграли проект, в рамках которого сегодня рассматривают концепт водородной заправки. На первой стадии там будет использоваться автотермическая конверсия, а на второй — совмещенно каталитический процесс с улавливанием углекислого газа. 

Кроме того, сейчас в институте отрабатывается процесс получения водорода из зеленого аммиака. Водород здесь добывается не из природного газа, а при помощи возобновляемых источников энергии. Кроме того, перспективно получение аммиака на основе прямого электрохимического синтеза. Такой процесс происходит при нормальных температурах и давлениях, в отличие от стандартного синтеза аммиака. Можно использовать аммиак напрямую, а можно за счет каталитического разложения получать из него смесь водорода с азотом и использовать ее в топливных элементах.

Также сотрудники ИК СО РАН взаимодействуют с Уфимским мотостроительным производственным объединением. Благодаря их методике можно получать из природного газа синтез-газ и использовать его для минимизации процессов образования оксидов азота. Это позволяет значительно улучшить показатели экологичности таких турбин. Работа находится на стадии опытных испытаний на стороне заказчика в Уфе.

Еще одно потенциальное перспективное направление — получение водорода из различных углеводородных топлив путем термического разложения (пиролиза).

«Сейчас компетенции ИК СО РАН таковы, что мы можем из любого углеводородного, углевод-содержащего топлива, аммиака, неуглеводного топлива, используя различные каталитические процессы, получать синтез-газ, водородсодержащие смеси. Проводить доочистку до нужного качества и применять такой углеводород в топливных элементах, строить водородные заправки и получать ценные химические продукты», — отметил Снытников.

Твердооксидные топливные элементы

Про твердооксидные топливные элементы (ТОТЭ) рассказал директор Института химии твердого тела и механохимии СО РАН член-корреспондент РАН Александр Петрович Немудрый.

​​nemudr.jpg

«Основные проблемы, которые стоят перед энергетикой будущего, — это экологичность и эффективность. Первая решается путем использования возобновляемых источников энергии и водородной энергетики. Для решения второй надо поднимать КПД, а также использовать распределенную энергетику. Эти требования можно в полной мере реализовать с использованием топливных элементов», — отметил ученый.​​

Преимущество твердооксидных топливных элементов в том, что они гибкие с точки зрения использования топлива. Благодаря им можно поставить установку, которая будет генерировать электроэнергию непосредственно под необходимую нагрузку. ТОТЭ генерируют электроэнергию, тепло и воду. Однако для их использования необходима высокая температура, что оборачивается жесткими требованиями к материалам и их совместимости. Механические свойства несущего слоя должны быть очень прочные. В этой связи ученые обращают внимание на топливные элементы, где есть металлическая или керамическая пористая поддержка.

Ниша ИХТТМ СО РАН — микротубулярные ТОТЭ. Они имеют высокую удельную мощность и устойчивы к температурным градиентам. Ученые собираются использовать в производстве ТОТЭ аддитивные технологии.

По мнению Александра Немудрого, сложность создания в России серийного производства ТОТЭ объясняется общей проблемой — «долиной смерти» между научной разработкой и производством. В институте невозможно полностью отработать технологию, которая пошла бы в серию. А производственники не стремятся вложить свои деньги в НИОКР и довести лабораторную разработку до серийного производства. От получения технологии до ее внедрения в производство должно пройти минимум шесть-семь лет.

Диана Хомякова

Фото Юлии Поздняковой

Похожие новости

  • 29/05/2021

    С генератором по жизни. Сибирские ученые прокладывают путь к портативной энергетике

    ​Дым от ТЭЦ в буквальном смысле отравляет жизнь. Мечты об экологически чистой и ресурсосберегающей энергетике во многих странах становятся явью, и у российских ученых тоже есть передовые разработки в этой сфере.
    1270
  • 15/04/2021

    В НГАСУ (Сибстрин) подписали соглашение о создании консорциума строительной отрасли Новосибирской области

    ​14 апреля 2021 года в Новосибирском государственном архитектурно-строительном университете (Сибстрин) состоялось торжествен​ное подписание соглашения о создании консорциума строительной отрасли Новосибирской области, в который вошли образовательные учреждения высшего и среднего звена, академии наук СО РАН и ведущие отраслевые объединения региона.
    625
  • 03/12/2020

    Нужна ли России водородная энергетика и на каких направлениях следует сосредоточиться разработчикам технологий

    Минэнерго разработало дорожную карту развития водородной энергетики в России до 2024 года. Редакция "РГ​" решила с помощью ВКС собрать за виртуальным круглым столом экспертов из Новосибирска и Томска - ученых и промышленников, чья деятельность связана с водородными технологиями, - и узнать, какие новые горизонты открывает водородная энергетика и в каких сферах еще находит сегодня применение водород.
    1228
  • 11/01/2021

    Достижения и открытия большой науки

    — Специалисты Института ядерной физики имени Г. И. Будкера, Института химии твердого тела и механохимии, Института катализа имени Г. К. Борескова СО РАН разработали и испытали прототип детектора на основе нанокомпозитного материала.
    642
  • 24/04/2018

    Как сделать жилье более доступным и экологичным?

    ​​Дом - это что-то теплое, уютное и, на первый взгляд - очень консервативное. Но на самом деле и строительство попевает за техническим прогрессом. Как сделать жилье более доступным, дешевым, экологичным? Мы создали краткий обзор тенденций и технологий будущего, которые появляются уже сейчас.
    2322
  • 31/10/2016

    В НГУ проходит российско-японская конференция по перспективным наноматериалам

    ​Новосибирский государственный университет совместно с Институтом химии твёрдого тела и механохимии СО РАН и Университетом Тохоку проводит с 30 октября по 2 ноября 2016 года российско-японскую конференцию «Advanced Materials: Synthesis, Processing and Properties of Nanostructures», посвящённую перспективным материалам и наноструктурам.
    5201
  • 27/01/2021

    Доклад сотрудницы ИК СО РАН на онлайн Форуме молодых учёных ШОС отмечен благодарностью Минобрнауки РФ

    ​В конце ноября 2020 года состоялся первый онлайн Форум молодых учёных Шанхайской организации сотрудничества, в котором приняла участие младший научный сотрудник группы комплексных технологических проектов Института катализа СО РАН, кандидат технических наук Сардана Банзаракцаева.
    787
  • 13/03/2020

    О реализации катализаторного проекта в Омске

    ​Совет директоров «Газпром нефти» ознакомился с ходом реализации проекта строительства первого в России современного завода по производству катализаторов для нефтепереработки. «Газпром нефть» продолжает строительство в Омске комплекса по производству высокотехнологичных катализаторов.
    1126
  • 27/01/2021

    Для светодиодов разработали керамические люминофоры

    ​Международная команда исследователей, в которую вошли ученые Дальневосточного федерального университета, оптимизировала состав и параметры композитных керамических люминофоров. Новые твердотельные преобразователи света можно будет применять в наземных и авиакосмических технологиях.
    486
  • 19/07/2021

    Катализаторы для выпуска современных моторных топлив импортозаместят в Омске

    Главгосэкспертиза России одобрила изменения в проекте производства катализаторов на площадке «Газпромнефть - Каталитические системы». Об этом Информагентство «Девон» узнало из сообщения ведомства. Дочернее предприятие «Газпром нефти» - реализует национальный проект по строительству современного катализаторного завода в Омске.
    313