​Российский вклад в проект международного экспериментального термоядерного реактора составляет почти 10%, заявил Максим Владимирович Иванцивский, старший научный сотрудник Института ядерной физики СО РАН 20 апреля в интервью корреспонденту ИА Красная Весна.


12 апреля прошло празднование 75-летия национального исследовательского центра «Курчатовский институт», на котором почетный президент института, академик Российской академии наук Евгений Велихов рассказал о том множестве грандиозных проектов, которые были осуществлены в стенах этого заслуженного научного учреждения. Кроме множества проектов в ядерной сфере, в Курчатовском институте был построен первый термоядерный экспериментальный реактор типа «ТОКАМАК», а сейчас институт принимает активное участие в проекте международного экспериментального термоядерного реактора ITER (International Thermonuclear Experimental Reactor), на который возлагаются большие надежды.


Чтобы больше узнать о текущем состоянии работ по созданию ITER, мы обратились к непосредственному участнику проекта, техническому координатору работ по ITER, старшему научному сотруднику Института ядерной физики СО РАН Максиму Владимировичу Иванцивскому.


— Добрый день. Расскажите, пожалуйста, как начинался проект ITER?


Предложения о создании межнациональной группы по строительству первого международного экспериментального реактора с участием СССР поступали еще в 1985 году. В 1992 году была выработана программа и задачи проекта, а также начат первый этап технического проектирования. В 2005 году было окончательно выбрано место строительства реактора, долина Кадараш (Cadarache) на юге Франции рядом с исследовательским центром ядерной энергетики. 24 октября 2007 года официально вступило в силу Соглашение о создании Организации ITER, тогда еще в составе шести стран участников, теперь их уже больше.


— А кто на данный момент участвует в проекте?


Сейчас основных участников семь: ЕС, Китай, США, Россия, Япония, Индия, Южная Корея. Но с учетом регулярно подключающихся стран-претендентов можно насчитать 34 государства с различным статусом в проекте.


— Какова роль России и вес её участия в проекте ITER?


От России в проекте участвуют 12 учреждений, начиная от «Росатома», «Курчатовского института», ИЯФ СО РАН и до «Чепецкого механического завода». В денежном выражении вклад России примерно 9,6%. Особенность проекта ITER в том, что у него нет прямого финансирования. Каждая страна участница финансирует создание тех или иных частей будущего реактора на своей территории с последующей отправкой их к месту строительства, поэтому достаточно трудно оценить конечную стоимость работ. Наверно, это будет для всего реактора, что-то около 15–20 млрд евро. В России финансирование создание «русских» сегментов ITER идет из бюджета, который распределяет «Росатом» участникам проекта.


— На каком этапе сейчас находится строительство ITER?


Если смотреть с точки зрения капитального строительства, то в Кадараш возведено часть зданий, само здание реактора находится на этапе фундамента. Если же оценить процесс создания частей реактора участниками проекта, то некоторые сегменты и структуры конструкции уже готовы, а некоторые еще находятся в проектировании, доработке или изготовлении.


— Расскажите немного о технических деталях будущего реактора.


Габариты термоядерного реактора будут весьма внушительные, приблизительно 40х40 метров. Конструкция реактора схожа с «ТОКАМАК», но несколько сложнее, в проекте применены все новые наработки и опыт строительства подобных установок. Внутренняя тороидальная камера на срез напоминает английскую букву «D» и форма плазмы в ней будет такой же. В центре «бублика» соленоид (индуктор), вокруг камеры множество магнитов, включая сверхпроводящие. Поэтому, если говорить в шутку, то на расстоянии нескольких метров окажутся вещества с самыми экстремальными температурами во вселенной. Внутри плазма, нагретая до 200 млн градусов, а за стеной жидкий гелий с температурой примерно -270 градусов. Нагрев плазмы будет производиться не только вихревым электрическим полем, но и дополнительным СВЧ излучением из гиротронов, а так же нейтральными пучками. Время горения дейтерий-тритиевой плазмы не менее 400 секунд. Объем плазмы более 800 кубических метров. Выходная мощность термоядерного реактора должна быть не менее 500 мегаватт при затратах на нагрев около 100 мегаватт.


— Какие технические проблемы вам кажутся наиболее трудными при реализации проекта ITER?


Проблем, которые придется решить при создании такой уникальной и грандиозной установки множество, скорее большинство технических решений вызывают опасения. Поэтому он и называется «экспериментальный» реактор и создан для того, чтобы увидеть проблемы и научиться их решать. Ну а если навскидку, то, например, достаточно серьезной проблемой можно считать создание диверторов. Хоть плазма и удерживается в камере магнитным полем, но все равно небольшая часть ее может просачиваться в нижнюю часть камеры, где располагаются специальные охлаждаемые приемники, диверторы. Учитывая, что температура плазмы 200 млн градусов, создание диверторов — весьма нетривиальная задача.


— Когда должен заработать ITER и какие вы видите перспективы этого начинания?


Технический пуск реактора назначен на декабрь 2025 года. Если получится стабильно удерживать плазму и иметь на выходе 500 мегаватт мощности, это уже будет успех. Но для строительства реального термоядерного реактора, который можно использовать в энергетике, нужно, чтобы он выдавал не менее 1000 мегаватт, при тех же затратах на нагрев в 100 мегаватт, иначе он не окупится. Но в любом случае ITER даст миру бесценные знания и опыт и продвинет мировую науку еще на несколько шагов вперед.


Напомним, что термоядерных реакторов типа «ТОКАМАК» построено в мире около трехсот. Самый первый из них, установка «Т-3», был запущен в 1955 году в Институте атомной энергии им. И. В. Курчатова под руководством академика Л. А. Арцимовича. На этой установке впервые в мире в 1968 году была достигнута температура плазмы в 10 млн градусов.

Похожие новости

  • 05/12/2015

    Лауреаты научных премий по физике за ... 2016 год

    ​Объявлены лауреаты научных премий за 2016 год, учрежденных Американским физическим обществом. Да-да, именно за 2016-й - эти заокеанские физики немножко живут в будущем. Премию Роберта Вильсона за выдающиеся достижения в физике ускорителей заряженных частиц получит новосибирский ученый, заведующий лабораторией Института ядерной физики СО РАН Василий Пархомчук.
    1667
  • 15/05/2018

    Новый российский гибридный реактор соберут в Курчатовском институте к концу года

    ​Гибридный реактор, который может в перспективе заменить АЭС, ученые научно-исследовательского центра Курчатовский институт соберут к концу 2018 года, физический пуск установки запланирован на 2020 год.
    324
  • 17/09/2018

    Большой адронный коллайдер и фундаментальные вопросы науки

    Россия пока не получила ни одного заказа при модернизации Большого адронного коллайдера, хотя раньше без нее ЦЕРН обойтись в принципе не мог. Ровно десять лет назад в Европейской лаборатории ядерных исследований (ЦЕРН) был запущен Большой адронный коллайдер.
    179
  • 28/06/2016

    Валерий Бухтияров: главная проблема нашей науки - невостребованность экономикой научных результатов

    Современная наука, в частности химия, стремительно меняет свои приоритеты, и уследить за этим процессом нелегко. В первую очередь это касается катализа — той области науки, которая несет в себе черты не только химии, но и физики, математики, биологии.
    1470
  • 31/10/2016

    Сотрудники Института ядерной физики СО РАН стали академиками и членами-корреспондентами РАН

    ​Сегодня впервые после пятилетнего перерыва завершились выборы в Российскую академию наук. Избрано более трехсот новых членов объединенной Академии, среди них - четыре сотрудника Института ядерной физики им.
    1864
  • 09/10/2017

    В Германии будут добывать антиматерию на установках ИЯФ СО РАН

    Экспериментальный цех новосибирского института ядерной физики получил большой заказ для исследовательского центра в Германии. Немцев заинтересовали магнитные установки ИЯФ. Еще вчера антивещество казалось научной фантастикой, а сегодня это реальный материал, который помогает узнать, как зарождалась Вселенная.
    576
  • 24/01/2018

    Академик Сергей Алексеенко: надо повышать эффективность использования и переработки органического сырья

    ​Будущее человечества — в развитии экологически чистых и эффективных технологий переработки органического сырья, использовании возобновляемых источников энергии. Насколько мировая, в том числе и сибирская, наука продвинулась вперед в этих вопросах? На этот и другие вопросы отвечает научный руководитель Института теплофизики СО РАН Сергей Владимирович Алексеенко.
    520
  • 06/04/2018

    Павел Логачев: «Как правило, мы специализируемся на том, что никто никогда не делал»

    ​Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) можно считать не только крупнейшим академическим институтом страны и одним из ведущих мировых центров в области физики высоких энергий, но и одним из самых коммерчески эффективных институтов СО РАН.
    488
  • 21/02/2018

    Институт ядерной физики СО РАН отмечает 60-летний юбилей

    ​​​60 лет назад в этот день вышло постановление Совета министров СССР о создании в Новосибирске Института ядерной физики. И по сей день это подразделение Академии наук – одно из самых крупных и самых успешных.
    1305
  • 15/12/2016

    Директор ИЯФ СО РАН Павел Логачёв об ответственности академика, коллайдерах и Нобелевских премиях

    Для доктора физико-математических наук Павла Логачёва последние два года отмечены важными вехами в карьере. В 2015 году он стал третьим по счёту после Герша Будкера и Александра Скринского директором Института ядерной физики СО РАН — крупнейшего академического института России.
    3405