Коллектив российских ученых из Красноярска, Новосибирска и Москвы в кооперации с зарубежными коллегами из Финляндии, Китая, Японии и Канады использует модернизированный суперкомпьютер Межведомственного суперкомпьютерного центра Российской академии наук (МСЦ РАН) в разработке медицинских препаратов для диагностики и терапии коронавирусной инфекции. МСЦ РАН осуществляет приоритетное выделение вычислительных ресурсов научным коллективам и организациям, ведущим исследования с целью борьбы против COVID-19, вызвавшего мировую эпидемию.

Пандемия коронавируса в 2020 году поставила под угрозу множество человеческих жизней и парализовала экономическую и социальную активность практически всех стран мира. Поиск способов предотвращения или снижения негативных последствий от коронавирусной инфекции сегодня является приоритетным направлением научных исследований. Усилия многих ученых во всем мире брошены на изучение процессов жизненного цикла вируса: практически каждый день публикуется несколько новых работ по этой теме. Это неудивительно, поскольку для разработки лекарственных препаратов необходимо детальное понимание механизмов функционирования вируса. Для этого широко применяются современные методы исследований с помощью сложных расчетов и компьютерного моделирования в таких областях как физика, химия и биология.

 

Международный проект для борьбы с мировой эпидемией

«Стремительное распространение мировой пандемии коронавирусной инфекции COVID-19 продемонстрировало отсутствие четких схем и эффективных способов быстрого реагирования в масштабах человечества на возникающие перед ним угрозы, вызванные новыми вирусными заболеваниями. Необходимость разработки технологий, позволяющих в короткие сроки создавать медицинские препараты для их диагностики и терапии, объединила научно-исследовательские коллективы из нескольких стран: России, Финляндии, Китая, Японии и Канады. Важность такой международной кооперации состоит в том, что все мы обладаем разными компетенциями, знаниями, умениями и ресурсами. В составе нашей географически распределенной команды есть врачи-вирусологи, биологи, химики, математики и физики. Но только объединив совместные усилия, мы можем быстро реагировать на стремительно меняющуюся картину мировой эпидемии COVID-19. Наш коллектив надеется, что проведенные исследования смогут оказать реальную помощь в борьбе с распространением подобных инфекций», — поясняет Анна Кичкайло, заведующая Лабораторией цифровых управляемых лекарств и тераностики Федерального исследовательского центра «Красноярский научный центр СО РАН», руководитель Лаборатории биомолекулярных и медицинских технологий Красноярского государственного медицинского университета имени профессора В.Ф. Войно-Ясенецкого.

 

Компьютерный «дизайн» медицинского препарата против COVID-19

«Идея нашего проекта – с помощью методов молекулярного моделирования сделать компьютерный «дизайн» медицинского препарата, избирательно взаимодействующего с рецептор-связывающим доменом Spike-белка коронавируса штамма SARS-CoV-2. Самые перспективные агенты специфического связывания будут использованы для диагностики (идентификации вирусных частиц в слюне), а также для разработки противовирусных средств, блокирующих инфицирование. Результаты теоретических расчетов и компьютерного моделирования затем будут проверены экспериментально на белках, вирусах и клетках», – резюмирует Анна Кичкайло.

В рамках реализации проекта с помощью суперкомпьютерного моделирования детально изучается взаимодействие Spike-белка на поверхности коронавируса с его мишенью в человеческом организме – белком АПФ2 (ACE2, Angiotensin-converting enzyme 2). АПФ2 служит входными воротами для коронавирусов типов SARS и SARS-2, поэтому блокирование взаимодействия этого белка с вирусом является одним из перспективных путей снижения вирусной активности в теле человека. Для оценки энергий связывания данных белков проводятся масштабные молекулярно-динамические и квантово-химические расчеты комплексов белков вируса и человека. На основании полученных данных будет проведен компьютерный подбор специальных молекул (аптамеров), которые лучше связываются с вирусными белками, чем с АПФ2. В конечном итоге, построение библиотеки аптамеров – кандидатов в лекарственные препараты – и оценка их взаимодействия с вирусным белком будут проведены с использованием методов молекулярного докинга и молекулярной динамики. Для самых перспективных аптамеров будут уточнены энергии связывания с помощью методов квантовой химии. Для проведения всех этих этапов научных исследований в сжатые сроки требуется использование большого количества вычислительных ресурсов.

 

 Рецептор.jpg

 

Для чего нужны суперкомпьютерные вычисления

До момента начала массового применения вакцины против коронавирусной инфекции важной задачей является разработка лекарственных препаратов, способных облегчить протекание болезни и снизить риск тяжелых последствий. Ощутимые результаты в таких исследованиях можно получить с помощью методов компьютерного моделирования, позволяющих изучать процессы на уровне отдельных молекул. На основе полученных знаний можно прогнозировать эффективность применения различных лекарственных препаратов. Подобные расчеты весьма трудоемки и зачастую могут быть проведены только с применением мощных суперкомпьютеров. С помощью моделирования биохимических процессов на высокопроизводительных вычислительных системах можно быстрее получать необходимые данные для последующего проведения натурных экспериментов существенно меньших объемов. Такой подход широко используется ведущими медико-фармацевтическими и научно-исследовательскими центрами на начальных этапах разработки, поскольку подобные исследования связаны с изучением гигантского количества вариантов соединений в составе потенциальных препаратов для лечения конкретных заболеваний.

«Экспериментальные данные о вирусе на молекулярном уровне очень скудны и получены в условиях, отличных от реальности. Например, структура белка получена для кристалла белка вируса, а не живого вируса в растворе. Более того, нет достаточного количества экспериментальных данных о структурах комплекса белков вируса и клетки человека, а также белка вируса и кандидатов на лекарства. С другой стороны, все эти совершенно необходимые данные по молекулярной структуре и процессу связывания можно получить с помощью суперкомпьютерных расчетов. Вот почему расчетная составляющая критически необходима, также, как и ее последующая проверка экспериментом», – поясняет Дмитрий Федоров, старший научный сотрудник Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (Япония).

 

Модернизированный суперкомпьютер в МСЦ РАН

Межведомственный суперкомпьютерный центр Российской академии наук является одним из самых мощных российских суперкомпьютерных центров коллективного пользования в сфере науки и образования. Коллектив МСЦ состоит из высококвалифицированных научных сотрудников, программистов и инженеров. Ресурсами Центра пользуются более 150 групп исследователей, решающих задачи фундаментальной и прикладной направленности.

Суммарная пиковая производительность вычислительных систем МСЦ РАН составляет более 1,3 ПФЛОПС (петафлопс – квадриллион операций с плавающей запятой в секунду, или 1000 терафлопс). Пять кластерных систем МСЦ РАН входят в рейтинг Top50 самых мощных российских суперкомпьютеров.

После очередной модернизации суперкомпьютера МВС-10П ОП, проведенной Минобрнауки России в конце 2019 года по программе развития центров коллективного пользования, его пиковая производительность достигла 771 ТФЛОПС (терафлопс – триллион операций с плавающей запятой в секунду).

«Регулярная модернизация вычислительных ресурсов МСЦ РАН позволяет нам обеспечивать новые возможности для проведения исследований и разработок, предоставлять исследовательским коллективам РАН и вузов мощные ресурсы для решения различных сложнейших фундаментальных и прикладных задач, а также обеспечивать организацию наиболее эффективной работы российских ученых», – отметил академик РАН Геннадий Иванович Савин, научный руководитель Межведомственного суперкомпьютерного центра Российской академии наук.

Доступ исследователей к ресурсам МСЦ РАН осуществляется на основе национальной исследовательской компьютерной сети Минобрнауки России (НИКС), оператором которой является МСЦ РАН.

 Российский суперкомпьютер поможет ученым в создании препаратов для борьбы с коронавирусом COVID-19.docx

Источники

Ученым дали приоритет в пользовании суперкомпьютером для создания лекарства от коронавируса
Око планеты (oko-planet.su), 26/03/2020
Ученым дали приоритет в пользовании суперкомпьютером для создания лекарства от коронавируса
Sigma-z.ru, 26/03/2020
Ученым дали приоритет в пользовании суперкомпьютером для создания лекарства от коронавируса
News-Life (news-life.pro), 26/03/2020
Ученым дали приоритет в пользовании суперкомпьютером для создания лекарства от коронавируса
Взгляд.Ру, 26/03/2020
Ученым дали приоритет в пользовании суперкомпьютером для создания лекарства от коронавируса
Seldon.News (news.myseldon.com), 26/03/2020
Ученым дали приоритет в пользовании суперкомпьютером для создания лекарства от коронавируса
123ru.net, 26/03/2020
Ученым дали приоритет в пользовании суперкомпьютером для создания лекарства от коронавируса
Russia24.pro, 26/03/2020
Ученым дали приоритет в пользовании суперкомпьютером для создания лекарства от коронавируса
RepeatMe.ru, 26/03/2020
Суперкомпьютер МСЦ РАН поможет российским ученым в борьбе с COVID-19
CNews.ru, 26/03/2020
Суперкомпьютер МСЦ РАН поможет российским ученым в борьбе с COVID-19
Национальная ассоциация нефтегазового сервиса (nangs.org), 26/03/2020
Красноярские ученые разрабатывают препарат от коронавируса
Kgs.ru, 27/03/2020
Ученые СО РАН и суперкомпьютер создают лекарство от коронавируса
Аргументы и Факты (krsk.aif.ru), 27/03/2020
Ученые СО РАН и суперкомпьютер создают лекарство от коронавируса
Gorodskoyportal.ru/krasnoyarsk, 27/03/2020
Ученые СО РАН и суперкомпьютер создают лекарство от коронавируса
Seldon.News (news.myseldon.com), 27/03/2020
Красноярские ученые будут работать над созданием препаратов от коронавируса
Seldon.News (news.myseldon.com), 27/03/2020
Красноярские ученые разрабатывают препарат от коронавируса
Seldon.News (news.myseldon.com), 27/03/2020
Красноярские ученые разрабатывают препарат от коронавируса
Сибирское агентство новостей (sibnovosti.ru), 27/03/2020
Красноярские ученые разрабатывают препарат от коронавируса
REDom (redom.ru), 27/03/2020
Суперкомпьютер МСЦ РАН поможет российским ученым в создании медицинских препаратов для борьбы с коронавирусной инфекцией COVID-19
Comnews.ru, 27/03/2020
Сибирские ученые при помощи суперкомпьютера создают лекарство от коронавируса
НИА Новосибирск (54rus.org), 27/03/2020
Красноярские ученые будут работать над созданием препаратов от коронавируса
Городские новости (gornovosti.ru), 27/03/2020
Красноярские ученые присоединятся к разработке вакцины против коронавируса
KrasnoyarskMedia.ru, 27/03/2020

Похожие новости

  • 26/11/2018

    Зачем в России создали центр квантовых технологий?

    ​Первые квантовые компьютеры могут появиться на Земле в ближайшие годы, но какую роль в их "рождении" сыграет Россия? Сергей Кулик, научный руководитель Центра квантовых технологий МГУ, рассказал, как российские физики будут развивать подобные технологии, и создавать квантовые вычислители в ближайшие годы.
    2037
  • 13/02/2018

    В Нью-Дели прошел Российско-индийский фестиваль науки

    ​В Нью-Дели прошел фестиваль науки, посвященный 30-летию сотрудничества России и Индии в атомной энергетике, сообщает пресс-служба компании "Русатом - Международная сеть". По инициативе госкорпорации "Росатом" с 6 по 9 февраля прошли мероприятия, лекции, презентации для учащихся.
    1160
  • 20/10/2017

    Ученые Томского НИМЦ составят прогноз развития высокотехнологичной медицины в России

    Коллектив ученых ​Томского национального исследовательского медицинского центра Российской академии наук выиграл грантовый конкурс от Минобрнауки на разработку прогноза реализации перехода к персонализированной медицине и высокотехнологичному здравоохранению.
    998
  • 02/07/2018

    Проект Сибирского суперкомпьютерного центра представили на президиуме РАН

    ​В Москве обсудили развитие суперкомпьютерных цифровых технологий в Российской Федерации. Научный руководитель Сибирского суперкомпьютерного центра (ССКЦ), директор Института вычислительной математики и математической геофизики СО РАН СО РАН член-корреспондент РАН Сергей Игоревич Кабанихин на заседании президиума РАН отметил, что сегодня суперкомпьютеры представляют собой технологическое оружие.
    1345
  • 27/12/2017

    Исследователи реализуют проект, позволяющий исправлять мутации ДНК митохондрий

    ​В последнее время все чаще можно услышать о тяжелых наследственных заболеваниях митохондриальной этиологии. Эти недуги вызываются дефектами митохондрий, которые являются своеобразными "энергетическими станциями" клеток организма.
    2145
  • 05/03/2018

    В Москве состоялся форум «Экология жизни: медицина, наука, инновации»

    ​28 февраля в Общественной палате РФ прошел первый в этом году крупный российско-японский форум в области медицины - "Экология жизни: медицина, наука, инновации". Форум организован для обмена опытом в рамках проекта "Культура жить.
    1472
  • 16/09/2019

    В РАН высказались о сибирском синхротроне

    Беспокойство ситуацией, сложившейся вокруг синхротрона нового поколения, который решено построить на базе Института ядерной физики им. Г.И Будкера СО РАН (ИЯФ), выразили президент Российской академии наук Александр Сергеев и вице-президент РАН Алексей Хохлов.
    637
  • 24/12/2018

    Ухудшение зрения может быть индикатором эмоционального выгорания

    ​Российские ученые провели исследование, в ходе которого выяснили, что хронический стресс в форме профессионального выгорания изменяет контрастную чувствительность глаз. Благодаря полученным результатам ученые лучше поймут влияние хронического стресса на организм человека и смогут предложить новые, более быстрые способы диагностики профессионального выгорания.
    1037
  • 27/11/2018

    Российские биологи расшифровали генетический «секрет» светящихся грибов

    ​Российские биологи идентифицировали все гены, ответственные за биолюминесценцию светящегося гриба. Воссоздание путей синтеза необходимых для этого компонентов — люциферазы и люциферина — в дрожжевых клетках заставило их излучать свет, видимый невооруженным глазом.
    1589
  • 11/01/2019

    Главные новости сибирской науки в декабре 2018 года

    В результате анализа данных информационного портала ГПНТБ СО РАН «Новости сибирской науки» за декабрь 2018 г. выявлены самые рейтинговые сообщения по различным категориям.  В категории «Новости Минобрнауки / ФАНО» большой интерес вызвали публикации: 19 декабря – Глава Минобрнауки назвал задачи в рамках нацпроекта «Наука».
    3726