Ученые из Томского научного центра СО РАН в кооперации с Томским государственным университетом ведут работы по созданию методов защиты поверхности космических аппаратов от повреждений и моделируют условия возникновения подобных чрезвычайных ситуаций на орбите.

В условиях космоса автоматические и пилотируемые аппараты постоянно подвергаются опасности. Дело в том, что околоземная орбита похожа на гигантскую свалку, только здесь вместо бытовых отходов — космический мусор. Встреча с крупным осколком техногенного происхождения может стать причиной серьезной аварии, и чтобы предотвратить это, необходимо изменить траекторию движения спутника.

Но вот столкновений с мелкими частицами мусора и метеорных тел, летящими с космическими скоростями, к сожалению, избежать нельзя. Кто-то спросит, ну какой вред они могут причинить массивному космическому аппарату, ведь они ничтожно малы? Конечно, малы, но и очень коварны! Даже объект диаметром всего в доли миллиметра, летящий со скоростью восемь километров в секунду, то есть значительно быстрее пули, способен повредить поверхность аппарата, пробить оболочку и вызвать сбои в работе оборудования на его борту.

Решением этой проблемы занимается объединенный коллектив из сотрудников ТНЦ СО РАН и НИИ прикладной математики и механики ТГУ. Ученые создают физико-математические модели, позволяющие спрогнозировать условия возникновения подобных ситуаций на орбите. Реализация проекта, получившего финансовую поддержку Российского научного фонда, предусматривает эксперименты на специальных установках, численное моделирование и, собственно, разработку технологических решений, обеспечивающих защиту космических аппаратов от внешних механических воздействий.

– Нашим научным коллективом проводятся эксперименты на уникальных баллистических установках, позволяющих в наземных условиях имитировать воздействие мелких частиц на космические аппараты, — рассказывает руководитель проекта, зав. отделом НИИПММ профессор, доктор физико-математических наук Александр Владимирович Герасимов. — Очень важно изучить процессы деформации и разрушения, которым подвергаются металлы, стекло, композиционные материалы, а также получить представление о повреждениях элементов корпуса космического аппарата и различного оборудования, например оптических приборов.

Наряду с экспериментальными методами большое значение имеет численное моделирование, осуществляемое на базе суперкомпьютера ТГУ «СКИФ Cyberia». Как поясняет зам. начальника отдела структурной макрокинетики ТНЦ СО РАН профессор, доктор физико-математических наук Сергей Алексеевич Зелепугин, математические модели позволяют спрогнозировать, каким образом  поведут себя те или иные конструкции в ситуациях с заданными условиями внешнего воздействия.

В рамках реализации проекта РНФ ученые должны создать новые установки для высокоскоростного метания, позволяющие проводить еще более сложные эксперименты, а также разработать так называемый SPH-метод, позволяющий в несколько раз повысить эффективность и скорость проводимых расчетов (его применение дает возможность эффективно рассчитывать процессы высокоскоростного соударения и фрагментации).

Уже полученные результаты исследований позволили предложить и новые средства защиты космических аппаратов. Так, по заказу НПО им. С.А. Лавочкина выполнены расчеты и экспериментально проверены защитные конструкции для исследовательского спутника — орбитальной обсерватории «Спектр-УФ». Профессор Герасимов объясняет принцип действия конструкций:

— Нами доказано, что практически стопроцентный уровень безопасности от маленьких частиц гарантирует использование комбинированной защиты — двухслойных экранов, выполненных из сетки и сплошного материала. Специальная сетка имеет «зубчатую» конфигурацию и действует по принципу обычной терки. Соударяясь с сеткой, микрочастица дробится, а сплошной экран не дает ее остаткам столкнуться с корпусом спутника. Уже подобраны такие варианты размещения этих элементов, которые позволяют кратно повысить их эффективность.

Как отметил Сергей Зелепугин, в перспективе планируется изучить возможность применения для защиты перспективных слоистых материалов, чем-то напоминающих строение оболочек морских раковин. Работы по изучению и созданию подобного класса материалов ведутся на базе ТНЦ СО РАН. Результаты, полученные объединенным научным коллективом, подтверждены патентами и получили признание как в России, так и за рубежом: в Англии, Португалии, Южной Корее, Китае, в США.

Пресс-служба Томского научного центра СО РАН

Источники

Ученые ТНЦ СО РАН ведут работы по созданию методов защиты поверхности космических аппаратов от повреждений | ФАНО России
Федеральное агентство научных организаций (fano.gov.ru), 18/09/2017
Сибирские ученые создают методы защиты поверхности космических аппаратов от повреждений
Наука в Сибири (sbras.info), 19/09/2017
В Томском научном центре разрабатывают защиту космических кораблей от мелких частиц
ИноТомск (inotomsk.ru), 19/09/2017
КОСМИЧЕСКИЕ КАРТЫ
Аргументы и Факты # Кемерово, 20/09/2017
КОСМИЧЕСКИЕ КАРТЫ
Аргументы и Факты # Омск, 20/09/2017
КОСМИЧЕСКИЕ КАРТЫ
Аргументы и Факты # Томск, 20/09/2017
КОСМИЧЕСКИЕ КАРТЫ
Аргументы и Факты # Сибирь, 20/09/2017
Сибирские ученые создают методы защиты поверхности космических аппаратов от повреждений
Российский научный фонд (рнф.рф), 19/09/2017
Ученые ТНЦ СО РАН ведут работы по созданию методов защиты поверхности космических аппаратов от повреждений
Polpred.com, 19/09/2017
Ученые ТНЦ СО РАН ведут работы по созданию методов защиты поверхности космических аппаратов от повреждений
Nanonewsnet.ru, 19/09/2017

Похожие новости

  • 24/07/2017

    Начинаются подготовительные работы к запуску спутника «Томск-ТПУ-120» в открытый космос

    ​​24 июля экипаж российского сегмента Международной космической станции (МКС) проверит работоспособность спутника "Томск-ТПУ-120" перед запуском аппарата в открытый космос. Сам запуск запланирован на 17 августа.
    361
  • 28/06/2016

    Китайские синоптики будут использовать разработки российских ученых

    ​Холдинг "Швабе" (ГК "Ростех") в середине июня заключил долгосрочный контракт на поставку дифракционных решеток в Китай. Изделия холдинга будут задействованы в лидаре, предназначенном для дистанционного определения температуры и давления атмосферного воздуха на высотах до трех км.
    666
  • 25/10/2017

    Сибирские ученые дистанционно определят виды болотных растений

    Радиофизики ТГУ совместно с учеными из Института водных и экологических проблем СО РАН изучили диэлектрические характеристики болотных растений. Они выяснили, что вид растительности можно определить на расстоянии – по особенностям строения их надземной части, используя средства дистанционного зондирования Земли.
    176
  • 11/08/2016

    В ТГУ создан консорциум по созданию костных имплантатов

    ​Томский государственный университет и ИФПМ СО РАН, которые занимаются созданием новых материалов, инициировали создание сетевого центра реконструкции дефектов черепно-лицевой области, сообщает пресс-служба ТГУ.
    1186
  • 04/10/2016

    В Томске создадут «рой» малых спутников в помощь сельскому хозяйству

    ​Томский политехнический университет (ТПУ) и томский Институт физики прочности и материаловедения СО РАН (ИФПМ СО РАН) выступят одними из инициаторов проекта по созданию группировки малых космических аппаратов для прорывных технологий в сфере сельского хозяйства, который планируется запустить в 2017 году.
    1067
  • 28/12/2016

    Термостойкий материал нового поколения прошел испытания

    ​На базе головной организации Федерального космического агентства - ЦНИИ МАШ - прошли испытания термостойкого материала нового поколения, созданного учеными ФТФ ТГУ и ИФПМ СО РАН для применения в ракетостроении.
    734
  • 18/10/2017

    Российские ученые напечатали из графена элементы электронных устройств будущего

    Сотрудники Института физики полупроводников СО РАН разработали метод печати надежных устройств для гибкой электроники на 2D-принтере. Для этого они получили новый диэлектрический материал — фторированный графен.
    146
  • 20/05/2017

    ФАНО России и «Роскосмос» вышли на орбиту сотрудничества

    ​В Томске состоялось совещание Межведомственного проектного офиса ФАНО России и ГК "Роскосмос". На встрече представители ФАНО России, госкорпорации "Роскосмос", академических институтов, администрации Томской области, вузов и предприятий космической отрасли обсудили вопросы координации работ по созданию российского электронно-лучевого оборудования и технологий для аддитивного производства металлических крупногабаритных деталей (3D-печати) для ракетно-космической техники.
    546
  • 12/01/2017

    ТНЦ СО РАН: Как ракушка материаловедам помогла?

    В течение одиннадцати лет успешно развивается международное сотрудничество между отделом структурной макрокинетики ТНЦ СО РАН и Харбинским инженерным университетом по направлению, связанному с разработкой многослойных металло-интерметаллидных композиционных материалов и моделированию процессов их разрушения.
    807
  • 28/04/2017

    Томские ученые готовы поставить в Милан уникальную машину для имплантатов

    ​Ученые томского Института сильноточной электроники (ИСЭ) СО РАН планируют до конца 2017 года поставить в Миланский политехнический университет уникальную машину для обработки поверхностей. Она может применяться, как в изготовлении медицинских имплантатов, так и в машиностроительной отрасли, сообщил ученый секретарь Томского научного центра Алексей Марков.
    445