Ученые ТГУ, ИФПМ СО РАН и ИХТЦ разработали новые материалы с бактерицидным и вирулицидным эффектом, которые могут применяться для создания различных изделий медицинского назначения, в том числе защитных масок и медицинской одежды. Материалы были испытаны на базе Федерального исследовательского центра фундаментальной и трансляционной медицины (ФИЦ ФТМ, Новосибирск) в соответствии с самыми современными протоколами оценки противовирусной активности с использованием модели вируса гриппа A/H1N1 и протестированы в ИФПМ СО РАН (Томск) на модели Escherichia coli (кишечная палочка). Новые материалы показали высокую эффективность в отношении обоих модельных объектов. 

– Ситуация с новыми патогенами, возникающими из природных очагов, требует принципиально нового подхода к организации профилактики: необходимо создавать барьеры на пути распространения микробов путем предотвращения их накопления на поверхностях и медицинских изделиях, – объясняет советник при ректорате ТГУ Алексей Сазонов.– Последние случаи вспышек вируса атипичной пневмонии, птичьего гриппа, гриппа H1N1, коронавируса COVID-19 показали, что недостаточно обрабатывать поверхности дезинфектантами. Необходимо, чтобы поверхности сами «боролись» с инфекцией. 

Учёные ТГУ и ИФПМ СО РАН разработали новые технологии придания антисептических свойств полимерным медицинским материалам, включая волокнистые, используемые для изготовления защитных масок, халатов, шапочек и других предметов медицинского назначения. В качестве инструмента, выступающего преградой для возбудителя, учёные использовали наночастицы оксида цинка и биокомпонентные частицы оксида меди (Cu-Fe)O, полученные методом электрического взрыва проводников. 

В ходе исследований на базе ФИЦ ФТМ были протестированы образцы волокнистых структур: несколько образцов полипропилена с частицами меди, оксида меди и оксида цинка, а также контрольные образцы – фрагменты нетканого материала спанбонда.
Экспозиция вируса гриппа А на поверхности волокнистых структур.jpg 

На материалы наносили жидкость, содержащую штаммы пандемического модельного вируса гриппа A/Tomsk/273-MA1/2010(H1N1pdm09). По прошествии 30 минут исследователи оценивали вирусную нагрузку в смывах с материалов. В смывах с образцов полипропилена, содержащих частицы оксида меди и оксида цинка, вирусная нагрузка отсутствовала, в отличие от смыва с поверхности контрольного образца (спанбонд), где отмечено высокое содержание вируса. 

Наряду с этим противовирусную активность материалов с наночастицами тестировали на культуре клеток MDCK, чувствительных к вирусу. Их обрабатывали жидкостями со смывов и оценивали жизнеспособность клеток. Анализ показал, что смывы с наноматерилов не оказали отрицательного воздействия на клетки, в отличие от смывов с контрольного образца (спанбонд), не содержащего наночастицы. 

В ходе исследований, проведённых сотрудниками ТГУ и ИФПМ СО РАН, была выявлена эффективность защитных свойств новых материалов в отношении кишечной палочки. Наряду с этим установлено, что технологические процессы не оказывают отрицательного влияния на биоактивные частицы и не снижают их защитные качества. 

– Результаты испытаний позволили нам по-новому взглянуть на собственную разработку, – говорит проректор ТГУ по научной и инновационной деятельности Александр Ворожцов. – Полученные нами наночастицы перспективны для применения и в других областях. Например, их можно вводить в лакокрасочные материалы и использовать для обработки поверхностей в медицинских учреждениях, школах, детских садах и других организациях с большой проходимостью. Сейчас для таких целей иногда применяются серебросодержащие краски. Краски с нашими наночастицами будут не только эффективны, но и кратно дешевле. Благодаря таким покрытиям процесс дезинфекции станет постоянным. В настоящее время ТГУ с партнёрами решает вопросы коммерциализации нового продукта и вывода его на рынок. 

Стоит отметить, что высокоэффективные и нетоксичные материалы и изделия из них (дверные ручки, поверхности столов, плинтусы, лицевые маски, одежда медперсонала, перчатки и др.), позволяющие прервать пути распространения инфекций, крайне востребованы в здравоохранении. Более того, эти материалы могут использоваться и в быту, защищая людей в режиме 24/7. Ярким примером могут стать корпуса сотовых телефонов с бактерицидным и вирулицидным эффектом, которые в настоящее время являются чуть ли не основным «транспортным средством» для патогенов. 

Добавим, что ТГУ ведет активные поиски новых инструментов противовирусной защиты. Так, совместно с Институтом фармакологии и регенеративной медицины СО РАН, ИПХЭТ СО РАН и промышленным партнёрами исследователи разработали новую технологию синтеза фармацевтической субстанции осельтамивира этоксисукцината и получили препарат с удвоенным противовирусным эффектом. Проект реализован в рамках федеральной целевой программы «Фарма 2020». 

Фото из архива ФИЦ ФТМ. 


Похожие новости

  • 28/10/2020

    Российские ученые нашли экологически чистую замену углю

    Улучшить свойства доступных видов биотоплива смогли ученые Томского политехнического университета (ТПУ). По словам авторов, им удалось получить из торфа и отрубей экологически чистое топливо, не уступающее по эффективности бурому углю.
    866
  • 28/10/2020

    Томские ученые помогут спасателям увидеть лесные пожары за горизонтом

    Ученые механико-математического факультета Томского госуниверситета (ММФ ТГУ) совместно с Институтом оптики атмосферы СО РАН выявили характеристики атмосферы, которые помогут обнаруживать загоризонтные полевые пожары на раннем этапе; на основе полученных данных разработана система раннего выявления пожаров, сообщает в среду пресс-служба ТГУ.
    602
  • 27/08/2018

    Институты СО РАН помогут ООО «СИБУР» разрабатывать биоразлагаемые пластики

    ​На VI Международном форуме технологического развития и выставке "Технопром-2018" состоялось подписание соглашений о сотрудничестве между нефтехимической компанией ООО "СИБУР" и двумя новосибирскими научно-исследовательскими организациями: Новосибирским институтом органической химии им.
    1454
  • 24/12/2020

    Сибирские ученые создали биолюминесцентный аптасенсор нового типа

    ​​​Исследователи из Института химической биологии и фундаментальной медицины СО РАН и Института биофизики ФИЦ «Красноярский научный центр СО РАН» разработали аптамер для биолюминесцентного белка обелина и предложили стратегию создания бимодульных аптамерных конструкций.
    445
  • 04/09/2019

    Цитируемые ученые ТПУ: катализаторы из золота и оболочки для ТВЭЛов

    ​Проект «Цитируемые ученые ТПУ» подводит итоги публикационной активности ученых Томского политехнического университета за летний период. Самый высокоцитируемый соавтор статей ученых ТПУ имеет индекс Хирша 75, а самый высокорейтинговый журнал — импакт-фактор 9,405 (Green Chemistry, Q1).
    1593
  • 18/06/2020

    Цитируемые ученые ТПУ: ториевый реактор, циркониевая керамика и скаффолды, покрытые пленкой оксида графена

    ​Проект «Цитируемые ученые ТПУ» подводит итоги публикационной активности ученых Томского политехнического университета за май. Самый высокоцитируемый соавтор статей ученых ТПУ имеет индекс Хирша 38, а самый высокорейтинговый журнал — импакт-фактор 4,507.
    634
  • 07/12/2020

    Российские биологи создали молекулу, сигнализирующую о наличии рассеянного склероза

    ​​Ученые новосибирского Института химической биологии и фундаментальной медицины (ИХБФМ) СО РАН и красноярского Института биофизики СО РАН создали аналитическую систему биомолекул, способную не только находить антитела, свидетельствующие о наличии рассеянного склероза у человека, но и сигнализирующую об этом, сообщила ТАСС старший научный сотрудник лаборатории химии РНК Института химической биологии и фундаментальной медицины СО РАН Мария Воробьева.
    534
  • 26/05/2020

    Наука будущего: беспилотник на солнечных батареях, обрывы проволоки и молекулярные ножницы

    Как совмещать открытия в медицине и в космической сфере, чем бактериальная целлюлоза поможет экологии планеты и можно ли излечить от болезни, отредактировав ДНК, — в материале портала "Будущее России.
    1086
  • 29/08/2016

    В Новосибирске будут производить шагающие экзоскелеты для инвалидов

    ​Заместитель генерального директора по инновационному развитию "Инновационного медико-технологического центра" (Новосибирского медтехнопарка) Анатолий Аронов на круглом столе в рамках форума "Новосибирск- город безграничных возможностей" рассказал, что будут производить резиденты второй очереди медицинского промышленного парка.
    3739
  • 15/12/2020

    Как мы стареем: связь митохондриальной ДНК и возраста организма

    ​Почему мы стареем? Можно ли если не остановить, то хотя бы замедлить этот процесс? И с чем он связан? На протяжении многих лет ученые всего мира выдвигают и опровергают разные концепции возрастных изменений.
    482