Институт физики полупроводников им. А. В. Ржанова СО РАН совместно с ЗАО "Экран ФЭП" сделали новый тип вакуумного фотодиода, который позволяет эффективно преобразовывать свет в электричество и перспективен для использования в солнечной энергетике, особенно при размещении устройств в космосе. Результаты этой работы опубликованы в журнале Scientific Reports.

При преобразовании света в электричество есть две проблемы: как выбить много электронов и как собрать и заставить их двигаться в определенном направлении (в противном случае, если электроны мечутся по полупроводнику бесцельно, он просто нагревается). В настоящее время наиболее эффективны многокаскадные полупроводниковые преобразователи. Сибирские ученые предложили использовать вакуумный фотодиод. Его отличие в том, что полупроводниковые электроды не соприкасаются, а находятся на определенном расстоянии друг от друга в вакууме, это позволяет взять анод независимо от катода, то есть сделать их структуру и состав, не ориентируясь на то, как они будут сочетаться между собой. Исследователи ИФП СО РАН предложили упростить электронам выход в вакуум за счет состава и структуры катода: они использовали арсенид галлия, покрытый одним слоем атомов цезия и кислорода. У такого электрода очень низкая работа выхода - около 1 эВ (для сравнения: у большинства материалов показатель составляет 4 - 6 эВ), это значит, что электрон можно извлечь в вакуум, затратив предельно малую энергию. То есть при использовании таких структур электроны выбиваются проще (не нужно греть катод или подавать напряжение).

В ходе эксперимента ученые осветили один из электродов в диапазоне длин волн 350 - 900 нм (на этот диапазон приходится максимум солнечной энергии излучения), в результате чего в цепи возник электрический ток без приложения разности потенциалов между электродами.

Теоретический коэффициент полезного действия фотодиода сравним с квантовой эффективностью фотокатода - 50 % и выше. В перспективе это позволит фотоэмиссионным преобразователям конкурировать с используемыми сейчас многокаскадными полупроводниковыми, особенно для применения в космосе. Квантовая эффективность - это величина, которая характеризует фоточувствительные приборы и материалы, количественная мера, показывающая разницу между тем, сколько фотонов материал поглотил, и сколько при этом испустилось электронов.

- Помимо прикладного значения, в таком приборе оказалось возможным изучать очень богатую физику фотоэмиссии низкоэнергетических электронов, а также процессы инжекции свободных спин-поляризованных электронов. На базе изготовленного вакуумного фотодиода можно создать детектор спин-поляризованных электронов с пространственным разрешением, что в свою очередь пригодится в электронных спектрометрах для получения информации о зависимости энергии электронов в кристалле от его импульса и спиновой поляризации, - рассказывает научный сотрудник Института физики полупроводников им. А. В. Ржанова СО РАН доктор физико-математических наук Олег Евгеньевич Терещенко. Об этом опубликована статья в Physical Review Applied.

«Наука в Сибири» 

Фото предоставлено Олегом Терещенко

Источники

Сибирские ученые сделали эффективный вакуумный фотодиод для солнечных батарей
Наука в Сибири (sbras.info), 23/11/2017
Сибирские ученые сделали эффективный вакуумный фотодиод для солнечных батарей
Редкие земли (rareearth.ru), 23/11/2017
Новый тип фотодиода для солнечных батарей
Академгородок (academcity.org), 24/11/2017
Сибирские ученые сделали эффективный вакуумный фотодиод для солнечных батарей
Академия Энергетики (energoacademy.ru), 24/11/2017
Российские ученые разработали эффективный фотодиод для солнечных батарей
Новости@Rambler.ru, 27/11/2017
Российские ученые разработали эффективный фотодиод для солнечных батарей
Чердак (chrdk.ru), 27/11/2017
Новосибирские ученые сделали эффективный вакуумный фотодиод для солнечных батарей
БезФормата.Ru Новосибирск (novosibirsk.bezformata.ru), 28/11/2017
ЛУНА В ПОМОЩЬ
Российская газета # Москва, 06/12/2017
ЛУНА В ПОМОЩЬ
Российская газета, 06/12/2017
Луна в помощь
ИА ИНВУР (invur.ru), 07/12/2017
Физики научились увеличивать КПД солнечной батареи до 50 процентов
Новости@Mail.ru, 06/12/2017
В ИФП СО РАН создали эффективный вакуумный фотодиод для солнечной энергетики
Научная Россия (scientificrussia.ru), 15/12/2017

Похожие новости

  • 25/08/2016

    Новосибирские ученые помогут выявить опухоль за три минуты

    ​Утверждение сибирских физиков звучит фантастично. Человек сдает кровь, ее проверяют на специальной установке, которая через несколько минут выдает график. У здорового человека это набор пиков, напоминающих расческу.
    710
  • 29/06/2017

    Ученые знают, как напечатать будущее

    ​Технологии цифровой печати объектов, как двумерных (2D), так и трехмерных (3D), стремительно развиваются во всем мире. К сожалению, в России за время перестройки была разрушена база, которая позволила бы нашей стране занять достойное место в этой области.
    265
  • 11/07/2016

    Ученые СО РАН приоткрывают тайны разработок

    Как возникают идеи проектов? Кто готовит чертежи и детали, а затем проводит сборку и тестирование? И какие проблемы приходится решать до того, как нажать на кнопку «Пуск». Об этом рассказывают ученые новосибирского Академгородка.
    1040
  • 18/09/2017

    Ученые ИФП СО РАН создают суперсцепляющий материал

    Возможно, первый «человек-паук» на планете будет новосибирцем: фантазии голливудских сценаристов – будни ученых Академгородка. Сегодня в Институте физики полупроводников работают над материалом, который сделает возможным появление «людей-ящериц».
    182
  • 25/07/2016

    Новосибирские учёные разрабатывают лазеры в зелёном диапазоне

    ​Сотрудники Института физики полупроводников СО РАН и лаборатории молекулярной фотоники НГУ занимаются одним из самых актуальных на сегодня направлений в области лазерных технологий — созданием зелёных светодиодов и лазерных диодов (за синие светодиоды в 2014 году ученые из Японии и США получили Нобелевскую премию).
    807
  • 30/11/2017

    Российские ученые описали свойства нового материала для солнечных батарей

    ​Российские, немецкие и белорусские ученые обнаружили аномально высокую способность оксисульфида висмута превращать энергию солнечного света в электричество. Чтобы свет превратился в электричество, фотоны должны столкнуться с материалом поверхности солнечных батарей и выбить из него электроны, которые затем направляются на электроды.
    88
  • 05/05/2017

    В ИФП СО РАН конструируют новые материалы

    - Работы, которые выполняются в нашем институте, позволяют нам получать знания необходимые для развития новых технологий и совершенствования методик, востребованных в промышленности, - заявил на пресс-конференции в ТАСС директор Института физики полупроводников им.
    477
  • 25/04/2016

    Новосибирский физик разрабатывает датчики углекислого газа на основе свето- и фотодиодов

    ​Молодой ученый Института физики полупроводников СО РАН, магистрант​ НГУ Карапет Элоян занимается разработкой датчиков углекислого газа на основе свето- и фотодиодов с использованием антимонидов индия и алюминия.
    1335
  • 30/08/2016

    В Новосибирске создали быструю флешку на основе мультиграфена

    Согласно результатам, полученным учеными из Института физики полупроводников им. А.В. Ржанова СО РАН, флеш-память с использованием мультиграфена по быстродействию и времени хранения информации может превосходить аналоги, основанные на других материалах.
    1003
  • 22/05/2015

    Электрон похудел

    В новосибирском Академгородке получен уникальный материалСАМЫЙ обычный, известный из школьного курса физики электрон преподнес сюрприз: он вдруг потерял массу. Точнее, он движется так, словно ее нет.
    1017