Графен – очень хороший проводник и перспективный материал, обладающий необычными свойствами. Сегодня ученые могут изготавливать уникально чистые образцы графена, которые содержат всего несколько примесей, мешающих его работе. Эти примеси можно обнаружить, так как из-за них происходит локальное нагревание материала. Российско-немецкая группа ученых исследовала этот эффект и впервые теоретически описала его. Результаты были опубликованы в статье в журнале Physical Review B. Исследования поддержаны грантом Российского научного фонда (РНФ). 


Одно из наиболее ярких свойств графена - рекордно высокая электрическая проводимость - делает его чрезвычайно перспективным материалом для использования в самых различных приложениях наноэлектроники. Однако часто во время производства этого материала не удается избежать попадания в него разного количества примесей, ухудшающих его свойства.

"Графен обладает очень хорошей проводимостью, если его тщательно очистить. Но нужно знать, где остались последние примеси, которые не удалось удалить, - поясняет соавтор работы, доктор физико-математических наук Валентин Качоровский, ведущий научный сотрудник Физико-технического института имени А.Ф. Иоффе и Института теоретической физики имени Л.Д. Ландау. - Наши коллеги применили сверхточную экспериментальную методику, чтобы измерить локальный нагрев, обусловленный оставшимися примесями, а мы попытались теоретически описать этот эффект. Развитая теория может стать основой для эффективного определения положения примесей".

Результаты экспериментов, которые упомянул Валентин Качоровский, представлены в статьях, опубликованных в журналах Nature и Science. В ходе этих исследований физики определяли положение примесей в графене по локальному разогреву с помощью сверхчувствительного сверхпроводящего термометра.

Когда по графену течет электрический ток (то есть в нем направленно движутся электроны), примеси создают дополнительное электрическое сопротивление, и рядом с ними выделяется немного больше тепла. Это происходит из-за столкновений электронов. Электрон может наткнуться на примесь (включение в решетке) или на фонон - воображаемую частицу, с помощью которой физики описывают колебания ионов в составе решетки. Также иногда происходят более сложные комбинированные столкновения, в которых одновременно задействованы примеси и колебания решетки.

"Оказывается, что именно в процессе такого комбинированного столкновения электрон отдает очень большую энергию кристаллической решетке, из-за чего и происходит разогрев образца, - комментирует Валентин Качоровский. - Поскольку такое столкновение чрезвычайно эффективно в смысле отдачи энергии, оно называется суперстолкновением".

У экспериментаторов были системы, где содержится всего несколько примесей на весь образец, и они смогли обнаружить проявления суперстолкновений в таких системах. Теоретикам удалось математически описать такие эффекты и выяснить, насколько сильно рассеивающие одиночные примеси могут повлиять на разогрев образца, из-за которого энергия теряется впустую, а приборы могут испортиться.

"Мы изучили, как примеси влияют на разогрев, узнали скорость передачи энергии от электрона к решетке, рассчитали изменение температуры вокруг такой примеси, - подвел итог Валентин Качоровский. - Мы предсказали разные зависимости - например, от средней температуры вдали от примеси и от силы рассеяния на одиночной примеси. Это уже можно проверять в эксперименте".

Работа проводилась в сотрудничестве с НИТУ "МИСиС" и Петербургским инстит​утом ядерной физики им. Б.П. Константинова.


Похожие новости

  • 23/06/2018

    Российские ученые нашли вещество, ослабляющее защиту раковых клеток

    ​Российские молекулярные биологи открыли вещество, способное "отключать" белки, мешающие химиотерапии убивать раковые клетки, и успешно проверили его работу на культурах рака прямой кишки.
    634
  • 25/09/2018

    Физики измерили намагниченность диэлектрика за одну триллионную долю секунды

    Коллектив ученых из России, Германии, Швеции и Японии разработал способ изменить намагниченность диэлектрика, воздействуя на него сверхкороткими лазерными импульсами. Ученым удалось добиться времени изменения намагниченности в одну пикосекунду – это в 100 раз меньше, чем предполагалось ранее.
    285
  • 18/08/2017

    Российские и французские ученые разработали уникальный детектор нейтронов

    ​Ученые из Объединенного института ядерных исследований вместе с коллегами из Орсе (Франция) разработали уникальный детектор нейтронов и с его помощью определили вероятность радиоактивного (нейтронного) распада атомных ядер легких химических элементов.
    728
  • 14/12/2018

    Российские физики раскрыли новый механизм образования железо-углеродных наночастиц

    ​Российские физики установили, как под действием высокой температуры и большого давления формируются покрытые углеродной оболочкой наночастицы из соединений железа с углеродом — карбидов. Эти данные помогут разработать методы синтеза нанокомпозитов с заданными свойствами для медицины, электроники и других областей.
    535
  • 14/12/2018

    Грантополучатели РНФ в программе России-24 «Наука»

    Несколько дней назад вручили Нобелевскую премию за исследования в области лазерной физики. В России тоже успешно работают в этой области. Так, Лаборатория лазерного воздействия Объединенного института высоких температур (ОИВТ) РАН Михаила Аграната разработала и совершенствует фемтосекундный лазерный скальпель – оптический пинцет, который работает в бесконтактном режиме и помогает с генетической диагностикой эмбриона, если ему от родителей передались какие-то аномалии.
    746
  • 15/08/2018

    Описаны механизмы увеличения энергии электронов в химических реакциях

    ​Ученые описали, как можно увеличить энергию электронов в ходе химических реакций. Принципы этого процесса используются в химическом синтезе, однако детально их ранее не исследовали. Работа выполнена при поддержке гранта РНФ и опубликована в журнале Angewandte Chemie.
    558
  • 10/09/2018

    Ученые реконструировали 3D-модель еды по двумерному изображению ее структуры

    ​Ученые показали, что на основе двумерного изображения продуктов питания можно создать трехмерную модель их внутреннего строения. Опираясь на нее, можно предсказать физические свойства пищевого продукта и смоделировать процессы, происходящие внутри него.
    337
  • 27/08/2018

    Ученые раскрыли механизм работы связанных с раком и аутизмом белков

    ​Ученые определили роль нового семейства белков, связанных с раком и аутизмом. Результаты работы опубликованы в высокорейтинговом журнале Molecular Cell. Исследование поддержано грантом Российского научного фонда (РНФ).
    291
  • 21/12/2018

    Нейрофизиологи показали, как депрессия меняет реакцию на стресс

    ​Ученые выяснили, что умеренный стресс, малозначимый для здорового человека, при депрессии вызывает более сильную и продолжительную реакцию. Полученные данные помогут понять механизм развития болезни и разработать новые методы диагностики.
    653
  • 04/10/2018

    Физики впервые получили спиновый ток при помощи лазера

    Исследователи из Физико-технического института имени А.Ф. Иоффе РАН в сотрудничестве с зарубежными коллегами впервые показали, что с помощью сверхкоротких лазерных импульсов можно генерировать гигагерцовый спиновый ток.
    475