​Работы на стыке наук стали трендом последних лет: физики успешно сотрудничают с химиками, лингвистикой занимаются с помощью программирования, а математика открывает новые возможности для решения проблем биологии гена. Последнее направление получило развитие еще шестьдесят лет назад, и сейчас в этой области работают, например, в ФИЦ Институт цитологии и генетики СО РАН. 

 
Математическая биология — это теоретический раздел науки о жизни, который занимается исследованием биологических систем во всех их аспектах методом математического моделирования. Ведущие научные сотрудники ИЦиГ доктора биологических наук Виталий Александрович Лихошвай и Тамара Михайловна Хлебодарова изучают свойства молекулярно-генетических систем как динамических объектов: описываютих структурно-функциональную организацию, формализуют её в виде системы дифференциальных уравнений и изучают динамические режимы их функционирования.
 
— Всю сложнейшую молекулярно-генетическую программу можно сжать, представить в виде нескольких уравнений, — рассказывает Виталий Лихошвай, — Дело в том, что если информацию об объекте нельзя сократить, то его нельзя и познать. Не нужно описывать огромную клетку во всем многообразии, которое придумала природа, и пытаться сделать модель, учитывающую много параметров,ведь в этом случае мы просто никогда не получим результат.
 
От структуры системы к её динамическим свойствам ведут определенные  причинно-следственные связи, которые ученые изучают, работая с генными сетями — группами координированно функционирующих генов, взаимодействующих друг с другом. Свойства, изучаемые исследователями, лежат в основе огромного количества генетических болезней: если в организме возникает мутация, которая изменяет функцию того или иного белка, тот начинает работать не так, как ему положено. Именно поэтому важно научиться вовремя распознавать и контролировать эти мутации.
 
Еще одна тема, над которой работают ученые — детерминированный (или динамический) хаос (а также гиперхаос, отличающийся только интенсивностью), который потенциально способен возникать в организмах на разных уровнях, из-за того что они являются динамическими саморазвивающимися системами и потому внутренне неустойчивы. Роль хаоса в функционировании, развитии и эволюции живых систем — интригующий вопрос. По словам Тамары Хлебодаровой, в настоящий момент известно несколько отрицательных примеров влияния хаоса. В частности, хаотичесую динамику связывают с такими патологиями как сердечная аритмия и почечная гипертензия. Хаос также может лежать в основе таких нейродегенеративных заболеваний, как эпилепсия, аутизм, шизофрения и болезнь Паркинсона: все они связаны с теми или иными повреждениями, которые могут возникнуть, если синтез белков в синапсах дезорганизован. Впрочем, можно указать как минимум один пример, когда хаотическую динамику можно рассматривать как позитивное эволюционное приобретение: у некоторых моллюсков стратегия поиска пищи устроена так, что деятельность нейронов заставляет их двигаться по гиперхаотической траектории. Обнаружение других примеров положительных и отрицательных влияний хаотической динамики — скорее всего, дело времени.  
 
В своей последней статье, опубликованной в журнале Scientific Reports группы Nature, исследователи открыли хаос и гиперхаос в синтезе рибосом. Рибосомы — это органоиды живой клетки, на которых фактически основана её жизнедеятельность.Они присутствуют во всех живых системах: как в прокариотах (доядерных организмах, например, кишечной палочке, E.coli, являющейся частью здоровой микрофлоры человека), так и в эукариотах (клетках, несущих ядра). Все рибосомы синтезируются по сходным биохимическим законам, причем это автокаталитический процесс, потому что, по сути, они создают белки, из которых сами и состоят. 
 
Кроме того, в клетке существуют специальные «машины», занимающиеся утилизацией «сломанного» (то есть продуктов жизнедеятельности) — без них клетки быстро забились бы биохимическими отходами. Но эти механизмы деградации тоже состоят из белков, которые синтезируются теми же рибосомами: выходит, живые организмы автокатализируют собственную утилизацию. Это значит, что возникает два процесса:позитивный и негативный. Благодаря этому, биогенез рибосом способен формировать очень сложную, в том числе и хаотическую, динамику поведения. 
 
Ученые показали, что хаотическая динамика, непредсказуемость,внутренне присуща такому фундаментальному процессу как синтез рибосом, и, следовательно, живым организмам. Тем не менее, мы хорошо знаем, что живые существа развиваются вполне предсказуемо, по более или менее устойчивым программам. То есть в процессе развития клетка как-то решила проблему внутренней нестабильности, но пока неизвестно, как именно: 
 
— Скорее всего, живые системы в процессе эволюции научились избегать хаоса, подавляя его, поэтому нам интересно, как он изгонялся и какие для этого были использованы механизмы, — говорит Виталий Лихошвай.

Похожие новости

  • 31/03/2017

    Академик Николай Колчанов рассказал о развитии Селекционного центра

    30 марта на территории новосибирского Академпарка прошло очередное заседание членов Совета «Сибирской биотехнологической инициативы» (СБИ). СБИ – это программа, объединяющая объекты инновационной инфраструктуры и органы власти Сибирского федерального округа, в целях развития биотехнологий, медицины и фармацевтики.
    576
  • 13/04/2016

    В ИЦИГ СО РАН создают базу данных для обработки научной информации

    ​В Федеральном исследовательском центре «Институт цитологии и генетики СО РАН» разрабатывают универсальную систему для поддержки селекционно-генетических экспериментов, пока что тестируя ее на проектах, связанных с изучением пшеницы.
    995
  • 05/07/2017

    В новосибирском Академгородке прошла конференция по высокопроизводительному секвенированию в геномике

    ​​Ученые из Института химической биологии и фундаментальной медицины СО РАН представили новые методы, использующие NGS секвенирование, уникальные для нашей страны, на II Всероссийской конференции "Высокопроизводительное секвенирование в геномике", прошедшей в новосибирском Академгородке.
    528
  • 10/01/2017

    Академику Николаю Колчанову исполнилось 70 лет

    ​Николай Александрович Колчанов родился 9 января 1947 года в с. Кондрашино Омской области. В 1971 году окончил Новосибирский государственный университет. С 1974 года работает в Институте цитологии и генетики СО РАН, а с 2008 года - директор этого института.
    763
  • 14/11/2017

    Юбилей академика Михаила Ивановича Воеводы

    ​Михаил Иванович Воевода родился 14 ноября 1957 года в Новосибирске. После окончания в 1982 году Новосибирского Государственного Медицинского Университета обучался в клинической ординатуре по специальности «внутренние болезни».
    152
  • 14/11/2016

    Академику Владимиру Солошенко исполнилось 70 лет

    ​Солошенко Владимир Андреевич Солошенко родился 12 ноября 1946 году в г. Черепаново Новосибирской области. Окончил Новосибирский сельскохозяйственный институт в 1970 году по специальности зоотехния. В 1970-1972 г.
    754
  • 19/09/2016

    Михаил Федорук: наше сотрудничество с Таиландом развивается с хорошей динамикой

    ​Исследовательский центр продовольственной безопасности (НГУ) и Школа биоресурсов и технологий Технологического университета им. Короля Монгкута Тонбури (Таиланд) уже осуществляют ряд совместных проектов.
    964
  • 27/08/2016

    Десятая Международная конференция «Bioinformatics of Genome Regulation and Structure\Systems Biology», BGRS\SB-2016

    С 29 августа по 2 сентября 2016 года Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук (ИЦиГ СО РАН, Новосибирск, Россия) проводит юбилейную 10-ую Международную мультиконференцию по биоинформатике регуляции и структуры геномов и системной биологии (Bioinformatics of Genome Regulation and Structure\ Systems Biology — BGRS\SB-2016).
    1749
  • 09/11/2017

    Научная молодежь: разработки, амбиции, планы

    ​В ТАСС (Новосибирск) накануне Всемирного дня науки состоится круглый стол, посвященный открытиям молодых ученых, их участию в крупных научных проектах. Молодые представители СО РАН - Института горного дела, Института химической биологии и фундаментальной медицины, Института цитологии и генетики, а также действующие и новые резиденты Академпарка, расскажут о ряде проектов, над которыми ведется работа в этом году.
    169
  • 03/11/2017

    ​​В ИЦиГ СО РАН прошли переговоры о сотрудничестве с Академией сельскохозяйственных наук Китая

    1 ноября ФИЦ "Институт цитологии и генетики СО РАН" посетила делегация представителей китайской науки и бизнеса. Главная цель визита - заключение соглашения о сотрудничестве, в рамках которого должны быть созданы два совместных селекционно-семеноводческих центра, один в Новосибирске (на базе ФИЦ ИЦиГ СО РАН), второй - в Пекине (Институт овощеводства и цветоводства).
    120