Сотрудники Сибирского федерального университета и Института физики имени Л. В. Киренского КНЦ СО РАН впервые исследовали и экспериментально подтвердили существование связанных состояний в континууме в одномерной слоистой фотонной структуре. Исследование опубликовано в журнале Communications Physics.

Оптоэлектронные устройства могут генерировать, передавать и обрабатывать световые сигналы. Среди таких устройств — лазеры, волноводы, сенсоры и светофильтры. Их эффективность определяется добротностью. Добротность показывает, во сколько раз энергии в системе запасено больше, чем ее теряется за один цикл колебаний. Концепция связанных состояний в континууме позволяет создавать устройства с изменяемой добротностью. Ее величина при этом ограничивается только неустранимыми потерями в материалах системы.

Связанное состояние в континууме (ССК) представляет собой состояние волны, в котором она имеет достаточно энергии для выхода из системы, однако не может сделать этого из-за интерференции. Такая система обладает бесконечной добротностью из-за того, что волна не выходит из нее, а значит, энергия на ее генерацию не теряется. Впервые ССК было описано для электрона в атоме в 1929 году. Тогда исследователи придумали особый вид атомного потенциала, не встречающийся в природе. Из-за наличия такого потенциала электрон при движении формирует большое количество волн, которые интерферируют друг с другом. При этом волны мешают друг другу выйти, и электрон оказывается привязан к атому, хотя его энергии достаточно для отрыва от него.

ССК оставалось малоизученным, пока в 1985 году физики не показали, что для их создания не нужен сложный потенциал, для наблюдения ССК нужна интерференция всего двух волн. После этой работы ССК были обнаружены экспериментально во многих физических системах. Однако существует также теорема, согласно которой ССК не может существовать в одномерных системах.

Теперь российские физики смогли показать возможность теоретического существования ССК в одномерной слоистой структуре. Чтобы сделать это, авторы ввели вместо второй пространственной размерности новую степень свободы — магнитное поле. Исследователи рассмотрели всего три слоя. При этом в центральном направление магнитного поля повернуто относительно крайних. При падении электронной волны на центральный слой она разделяется на две части, которые при определенных параметрах системы могут интерферировать при выходе из слоя и оставаться внутри него.

Но создать такую систему на практике оказалось непросто. Чтобы облегчить задачу, ученые решили использовать световые волны вместо электронных. Для этого авторы создали аналогичную систему, состоящую из трех частей: два фотонных кристалла, между которыми заключен слой жидкого кристалла. В такой системе авторы показали, что световая волна, которая падает на жидкокристаллический слой, расщепляется на две волны, которые могут деструктивно интерферировать при выходе из этого слоя, если оптическая ось ориентирована правильно. Задача оказывается аналогичной описанной для электронных волн, а роль магнитного поля в такой системе выполняет повернутая оптическая ось.

Никита Шевцев

Источники

Созданы оптоэлектронные устройства с управляемой добротностью
Индикатор (indicator.ru), 15/06/2020
Ученые СФУ "связали свет в континууме" для создания оптоэлектронных устройств с управляемой добротностью
Научно-инновационный портал СФУ (research.sfu-kras.ru), 18/06/2020
Ученые СФУ "связали свет в континууме" для создания оптоэлектронных устройств с управляемой добротностью
Сибирский федеральный университет (sfu-kras.ru), 18/06/2020
Созданы оптоэлектронные устройства с управляемой добротностью
Nanonewsnet.ru, 18/06/2020
Ученые РФ и Тайваня заперли электромагнитные волны в одномерных слоистых структурах
Искусственный интеллект ИТ новости (ai-news.ru), 20/06/2020
Ученые РФ и Тайваня заперли электромагнитные волны в одномерных слоистых структурах
Научная Россия (scientificrussia.ru), 19/06/2020
Ученые СФУ "связали свет в континууме" для создания оптоэлектронных устройств с управляемой добротностью
Российский фонд фундаментальных исследований (rfbr.ru), 19/06/2020

Похожие новости

  • 13/04/2018

    Дилатометр измерит деформации космических материалов в вакууме

    Ученые из Института физики им. Л.В. Киренского Федерального исследовательского центра Красноярский научный центр СО РАН (ФИЦ КНЦ СО РАН) разработали измерительную ячейку для исследования свойств материалов при температурах близких к абсолютному нулю.
    1118
  • 23/09/2019

    Учёные изучили неожиданные свойства разупорядоченных нанорешёток

    Учёные Сибирского федерального университета совместно с коллегами из Королевского технологического института (Стокгольм, Швеция), Федерального Сибирского научно-клинического центра ФМБА России (Красноярск), Института физики им.
    608
  • 24/06/2019

    В Сибири работают над электроникой будущего

    ​Ученые Сибирского федерального университета (СФУ) и Института физики имени Л.В. Киренского СО РАН создали самоорганизующийся шаблон из кремнезёма для прозрачных электродов на гибкой подложке, эффективный при разработке современных гибких дисплеев и светодиодов.
    726
  • 27/03/2019

    Для молодых ученых в Красноярске пройдет конкурс-конференция по физике

    ​4 апреля 2019 года в конференц-зале главного корпуса Института физики им. Л.В. Киренского СО РАН пройдет конкурс-конференция по следующим направлениям физики: 1) Физика конденсированного состояния.
    1050
  • 09/12/2019

    Члену-корреспонденту РАН Валерию Миронову - 80 лет

    ​8 декабря свой юбилей отмечает член-корреспондент РАН, профессор, доктор физико-математических наук Валерий Леонидович Миронов. С 1986 г. по 1997 г. он работал на посту ректора Алтайского государственного университета.
    502
  • 24/04/2018

    Как сделать жилье более доступным и экологичным?

    ​​Дом - это что-то теплое, уютное и, на первый взгляд - очень консервативное. Но на самом деле и строительство попевает за техническим прогрессом. Как сделать жилье более доступным, дешевым, экологичным? Мы создали краткий обзор тенденций и технологий будущего, которые появляются уже сейчас.
    1572
  • 24/01/2017

    Красноярские ученые рассчитали, как поймать свет с помощью диэлектрических шариков

    ​Теоретические расчеты красноярских физиков показали, что цепочка из одинаковых диэлектрических шариков может быть использована в качестве ловушки для электромагнитных волн. Такая цепочка будет вести себя как световод, который улавливает и захватывает свет, падающий на него под любым углом.
    1518
  • 07/11/2016

    Сотрудник Красноярского филиала ИТ СО РАН стал победителем конкурса «Энергия молодости»

    ​Молодые ученые из Красноярска, Санкт-Петербурга и Томска получат гранты в размере 1 млн. рублей на продолжение своих научных исследований. Церемония награждения победителей пройдет 24 ноября в Москве в рамках пятого международного форума по энергоэффективности и энергосбережению.
    2453
  • 30/11/2018

    Энергоэкономные технологии для науки и промышленности

    ​В Институте физики им. Л. В. Киренского (ФИЦ КНЦ) СО РАН учёные разработали энергосберегающую технологию получения разнообразных редких кристаллов. Многие полезные для промышленности и научных исследований кристаллы растут из оксидов, которые плавятся при очень высоких температурах (в природе - путём кристаллизации в расплавленной магме).
    901
  • 28/10/2016

    Большая наука Красноярска зарождалась в Институте физики им. Л. В. Киренского СО РАН

    В октябре этого года исполнилось 60 лет с момента появления в Красноярске Института физики СО РАН. Здесь работают люди, которые умеют опережать время… Из подвала пединститута История создания института связана с именем Леонида Васильевича Киренского.
    1911