​Команда исследователей из разных стран мира впервые синтезировала графеновые наноленты со стабильным зигзагообразным краем и на практике доказала их магнитные свойства. Ученые получили воспроизводимые образцы с атомарной и магнитной точностью. Подобные  материалы в будущем могут стать “деталями” спинтронных приборов и квантового компьютера.

Концепцию синтеза предложил сотрудник Новосибирского института органической химии им. Н.Н. Ворожцова СО РАН доктор химических наук Евгений Викторович Третьяков. Работы велись в Институте исследований полимеров имени Макса Планка и Оксфордском университете. Статья об этом опубликована в журнале Nature.

Все внимание к краям графена

Графеновые наноленты - узкие полоски из двумерного кристалла графена - хорошо изучены в теории. Интересно, что свойства графеновой наноленты зависят от формы ее краев. Если рассмотреть этот объект под электронным микроскопом, мы увидим сетку из правильных шестиугольников, образованных атомами углерода. При этом атомы на краях будут располагаться или зигзагом, или в виде "кресла". Это зависит от того, как ориентированы ячейки кристаллической решетки (условно говоря, по горизонтали или по диагонали).

Зигзагообразные края графеновых нанолент давно интересовали ученых как потенциальные обладатели магнитных свойств, но протестировать такие наноленты на практике не выходило. Дело в том, что их края получались нестабильными и быстро портились при взаимодействии с окружающей средой - происходила реакция с кислородом. Другая сложность состояла в том, что не удавалось создать "стандартную" графеновую наноленту. Каждый из получаемых образцов был уникален, и это влияло на их характеристики, а значит, результаты каждой конкретной работы нельзя было повторить. Для того чтобы продвинуться в исследованиях, требовались другие образцы: воспроизводимые и достаточно устойчивые, с которыми легко проводить манипуляции, например, наносить на поверхности и изучать методами сканирующей электронной спектроскопии.

Молекулярный магнетизм: на стыке химии и физики

Решение пришло неожиданно, благодаря встрече российских и немецких химиков разных научных школ. Во время профессорского визита в Институт исследований полимеров имени Макса Планка (Германия) Евгений Третьяков участвовал в семинаре, где обсуждалась проблема высокой химической активности зигзагообразных краев нанолент из графена. Там и появилась идея, впоследствии оказавшаяся более чем удачной.

"В этой работе встретились два направления, которые раньше не пересекались: химия стабильных органических радикалов, а также физика и химия графена, - рассказывает Евгений Третьяков. - В институт я приехал с другой научной задачей, но раньше много лет занимался нитроксильными радикалами. У меня возникло предложение: что, если специально завести в края стабильные радикальные группировки молекул нитронилнитроксида? Было решено попробовать". Меньше чем за месяц ученые синтезировали долгожданные образцы нанолент - с атомарно и магнитно точным зигзагообразным краем и воспроизводимыми свойствами. Причем удалось получить впечатляющее количество экземпляров (счет идет на миллиграммы). Средняя длина синтезированных нанолент около 100 нанометров, ширина - 7,1 ангстрем.

Нитроксильные группы, которые "пришивали" к краям графена, сами являются магнитно активными. Поэтому для чистоты эксперимента их присоединили не только к графеновым нанолентам, но и к их полимерным предшественникам, края которых точно не имеют магнитных свойств. Затем к исследованиям подключилась группа ученых из Оксфордского университета под руководством профессора Лапо Богани. Используя самые современные приборы, они увидели существенную разницу в магнитном поведении графеновых и полимерных образцов.

Выяснилось, что в графеновом материале нитроксильные группы индуцируют значительную по сравнению с полимером спиновую плотность на атомах углерода, с которыми они связаны. Из-за этого на краях нанолент появляются магнитные состояния, обусловленные неспаренными электронами радикальных групп и краевых спинов. Именно в силу наличия последних графеновый остов может быть использован в качестве когерентного канала, обеспечивающего взаимодействие радикальных спинов, и служить основой двухкубитового логического вентиля в квантовых компьютерах.

Квантовые перспективы

Сейчас в НИОХ СО РАН под руководством Евгения Третьякова графеновыми нанолентами занимается целая команда молодых сотрудников. Продолжается работа с Институтом исследований полимеров и Оксфордским университетом. В планах сибирских ученых создать целую область молекулярного дизайна графеновых магнетиков (это не только наноленты, но и другие геометрические структуры из графена). В перспективе должны получиться материалы, решающие такие задачи спинтроники, как электронное детектирование спиновых состояний или реализация квантовых операций посредством одного проводящего электрона.

Сегодня в электронных устройствах для передачи, обработки и хранения информации используются электроны как носители заряда. Однако электроника практически не рассматривает собственный магнитный момент элементарной частицы, или спин. Спиновыми свойствами электрона занимается новая быстроразвивающаяся область науки и технологии - спинтроника.


Спин электрона, в частности, может быть полезен для создания производительных и менее энергоемких элементов микросхем. Его можно очень быстро изменить, и это требует совсем мало энергии по сравнению с аналогичными операциями, производимыми над движущимися зарядами. Такие свойства спина открывают перспективы создания новых приборов, схожих с обычными транзисторами, но более эффективных. Они будут располагаться в микросхемах гораздо плотнее, а значит, сохранится закон Мура: тенденция к миниатюризации устройств при увеличении их производительности.

Особый интерес спинтроника представляет для реализации идеи квантовых вычислений. Под воздействием магнитного поля спин принимает одно из двух направлений, которые могут быть использованы для кодирования состояний 0 и 1 квантового бита (кубита) - единицы информации потенциального квантового компьютера. Правда, исследования в этой области пока далеки от конкретного применения.

Работа проводилась в сотрудничестве с Оксфордским университетом, Великобритания (проф. Лапо Богани (Lapo Bogani), Институтом исследований полимеров им. Макса Планка, Германия (д-р Акимицу Нарита (Akimitsu Narita), проф. Мартин Баумгартен (Martin Baumgarten). Профессорский визит Е.В. Третьякова в Институт исследований полимеров им. Макса Планка, Германия состоялся благодаря гранту DAAD (Немецкой службы академических обменов). В настоящее время исследования в НИОХ СО РАН выполняются при поддержке Российского научного фонда (проект № 18-13-00173).

Александра Федосеева

Похожие новости

  • 08/02/2016

    Находка российских ученых: кристаллы-светоизлучатели

    ​Исследователи разработали и готовят к внедрению интереснейшую технологию, созданную специально для гибких электронных устройств.        Эта технология дает возможность выращивать кристаллы для подобных устройств – кристаллы полупроводниковые, органические.
    1274
  • 09/06/2016

    Надежда на прорыв: медики сотрудничают с институтами СО РАН

    Надежда на прорыв. Именно такими словами учёные Новосибирского НИИ туберкулёза Минздрава РФ охарактеризовали начало совместной работы с коллегами из институтов Сибирского отделения РАН - Институтом химической кинетики и горения, Институтом органической химии, Институтом теоретической и прикладной механики​.
    1159
  • 06/09/2016

    Наночастицы - невидимые и влиятельные

    ​Прибор, сконструированный в Институте химической кинетики и горения им. В.В. Воеводского СО РАН, помогает обнаружить наночастицы за несколько минут. — Есть работы российских, украинских, английских и американских исследователей, которые показывают, что в городах с высоким содержанием наночастиц отмечается повышенный уровень заболеваемости сердечными, онкологическими и легочными заболеваниями, — подчеркивает старший научный сотрудник ИХКГ СО РАН кандидат химических наук Сергей Николаевич Дубцов.
    1026
  • 14/09/2018

    Место, где рождаются технологии

    Опытное химическое производство Новосибирского института органической химии имени Н.Н. Ворожцова СО РАН (ОХП НИОХ СО РАН) — место, где можно в буквальном смысле слова прикоснуться к прикладной науке.   Новосибирские химики создают здесь технологии, на основании которых производят реактивы для научных институтов и промышленности (от сельского хозяйства до космоса) и выпускают малые партии наукоемкой продукции.
    120
  • 29/08/2016

    В Новосибирске будут производить шагающие экзоскелеты для инвалидов

    ​Заместитель генерального директора по инновационному развитию "Инновационного медико-технологического центра" (Новосибирского медтехнопарка) Анатолий Аронов на круглом столе в рамках форума "Новосибирск- город безграничных возможностей" рассказал, что будут производить резиденты второй очереди медицинского промышленного парка.
    1919
  • 02/09/2016

    Наночастицы: невидимые и влиятельные

    Прибор, сконструированный в Институте химической кинетики и горения им. В.В. Воеводского СО РАН, помогает обнаружить наночастицы за несколько минут.— Есть работы российских, украинских, английских и американских исследователей, которые показывают, что в городах с высоким содержанием наночастиц отмечается повышенный уровень заболеваемости сердечными, онкологическими и легочными заболеваниями, — подчеркивает старший научный сотрудник ИХКГ СО РАН кандидат химических наук Сергей Николаевич Дубцов.
    1877
  • 05/12/2015

    Разработка ученых НИОХ и ИХКГ СО РАН позволит получить максимальный эффект при минимальной дозе лекарства

    ​Ученые Новосибирского института органической химии имени Ворожцова и Института химической кинетики и горения имени Воеводского разработали установку, позволяющую получить максимальный эффект от лекарства и минимизировать его дозу, сообщает издание СО РАН "Наука в Сибири​".
    1596
  • 29/08/2018

    НИОХ СО РАН на международном форуме «Технопром-2018»

    ​Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук (НИОХ СО РАН) принимает участие в VI Международном форуме технологического развития «Технопром», который проходит в Новосибирске с 27 по 30 августа 2018 года.
    195
  • 09/11/2015

    Записать бит информации на одну молекулу

    ​Двадцать лет назад возможность носить сотни гигабайт в кармане казалась фантастикой и бесконечно далеким будущим. Сейчас это уже никого не удивляет, но предел не достигнут. Сотрудник лаборатории гетероциклических соединений Новосибирского института органической химии им.
    1270
  • 13/01/2016

    Татьяна Толстикова: "В СО РАН есть все предпосылки, чтобы решить проблему импортозамещения лекарств"

    ​Доктор биологических наук, профессор Татьяна Генриховна Толстикова возглавляет лабораторию Новосибирского института органической химии им. Н.Н. Ворожцова (НИОХ) СО РАН - уникальную для России структуру.
    2228