​Количество промышленного и бытового мусора на поверхности Земли увеличивается год от года. Существующие методы переработки производственных отходов не всегда оказываются доступными и действенными для предприятий, поэтому в Институте геологии и минералогии имени В.С. Соболева СО РАН разрабатывается новый более целесообразный для сибирской промышленности подход обезвреживания вредных элементов с помощью геохимических барьеров.

Геохимический барьер — это материал, который закладывается возле отходов и как губка впитывает в себя все загрязняющие вещества, в том числе и тяжелые металлы. Так опасные компоненты переходят в малоподвижные формы и больше не загрязняют окружающую территорию. В качестве геохимического барьера могут выступать различные сорбирующие материалы, из них самые распространенные в природе — болотные растения и торф. Основные требования, которые предъявляются к биосорбентам, использующимся для обезвреживания отходов, — это высокая сорбционная емкость по отношению к токсичным элементам, способность быстро и прочно связывать ионы металлов, экологическая чистота, доступность и дешевизна. По словам руководителя проекта научного сотрудника ИГМ СО РАН кандидата геолого-минералогических наук Ольги Сергеевны Наймушиной, торф подходит по всем критериям, и, проведя множество экспериментов с разными видами сорбентов, научная группа выбрала именно его.

«Метод применения геохимических барьеров для защиты окружающей среды уже несколько лет существует в теории, но на практике в России еще не применялся, — рассказывает Ольга Наймушина. — В этом году мы планируем взять 40 проб разных типов торфа по пять килограммов и провести на них эксперименты с шестью вредными элементами. В Западной Сибири очень много месторождений торфа, они сильно отличаются по генезису (глубине зарождения) и составу, что также влияет на сорбционную емкость. Мы будем выезжать на разные территории, отбирать материалы, привозить в лабораторию и проводить эксперименты, наблюдая за тем, как торфа̀ собирают на себя тяжелые металлы. Когда мы получим результаты, то сможем смоделировать и спрогнозировать, для какого типа загрязнений какие виды торфа эффективнее использовать, в какой пропорции необходимо это делать и как долго вредные элементы будут удерживаться. После лабораторных исследований мы проверим действие сорбента на сбрасываемых растворах предприятия топливно-ядерного цикла (ПАО “Новосибирский завод химконцентратов”) и грунтовых водах, дренируемых (осушаемых) угольными резервами (Колыванское каменноугольное месторождение). Мы завезем туда необходимое количество торфа, он впитает в себя все тяжелые металлы из отходов и таким образом иммобилизует их: приведет в неподвижное состояние и обезвредит».
 
Также в ИГМ СО РАН собираются провести ряд экспериментов по механактивации некоторых видов торфа. Если гуминовые кислоты, из которых состоит этот биосорбент, раздробить в мельнице, то они будут вбирать в себя больше тяжелых металлов и вредных элементов. Таким образом научная группа надеется увеличить сорбционную емкость торфа.
 
С помощью подобной технологии использования геохимических барьеров можно иммобилизовывать не только производственные отходы, но и любые токсичные элементы, включая бытовой мусор. Ядерную и угольную промышленности Ольга Наймушина выбрала потому, что их влияние наиболее опасно для окружающей среды. В будущем научная группа планирует расширить круг предприятий, на которых будет действовать эта технология.
 
Проект «Иммобилизация тяжелых металлов природными и модифицированными биосорбентами» поддержан грантом Российского научного фонда по мероприятию «Проведение исследований научными группами под руководством молодых ученых» Президентской программы исследовательских проектов.
 
Екатерина Глухова

Похожие новости

  • 03/05/2018

    Ученые СО РАН разворачивают мониторинг качества воздуха

    ​Если вредные привычки в питании человек в стремлении к здоровому образу жизни может скорректировать, то от ежедневного потребления 15 кубометров воздуха отказаться вряд ли удастся. Между тем в кубическом сантиметре воздуха сосредоточено около десяти тысяч аэрозольных частиц, попадающих в наш организм с каждым вдохом.
    484
  • 10/11/2016

    Новосибирские машиностроители готовы предложить импортозамещающие технологии металлургам

    ​Международная научно-практическая конференция "Оборудование для обогащения рудных и нерудных материалов. Технологии обогащения" стартовала 9 ноября в Новосибирске. Красной нитью сквозь большинство докладов, а их будет представлено более 30-ти, пройдет тема импортозамещения.
    1870
  • 12/03/2018

    Снег помог ученым оценить качество воздуха в Новосибирске

    ​Специалисты Института геологии и минералогии СО РАН и Института ядерной физики имени Будкера СО РАН проанализировали элементный состав твердых осадков снежного покрова в парковых зонах Новосибирска и его окрестностях.
    621
  • 12/07/2017

    Сибирские ученые начали поиск новых месторождений алмазов в Архангельской области

    ​Ученые Института геологии и минералогии (ИГМ) Сибирского отделения (СО РАН) при поддержке Российского научного фонда (РНФ) начали масштабное исследование минералов для поиска новых алмазных месторождений в Архангельской области.
    1244
  • 25/10/2016

    Журнал «Геология и геофизика» выбрал новую статью месяца

    ​Журнал «Геология и геофизика» выбрал новую статью месяца. Ей стала работа «Геологическое строение, рельеф и неотектоника Чулышманского нагорья (Горный Алтай)». Материал опубликован в разделе «Тектоника и геодинамика».
    1541
  • 26/10/2016

    Николай Похиленко: Арктика как стратегический резерв

    Могли ли мы в эпоху телеграфа, «Книги – почтой» и целлулоидной пленки представить себе Интернет? Воображение способно нарисовать не всякую технологию будущего. Но сырье для них уже сегодня необходимо искать в арктическом поясе России, уверен директор Института геологии и минералогии СО РАН им.
    1294
  • 14/03/2016

    Карьера начинается с Арктики

    ​Магистрант геолого-геофизического факультета НГУ Андрей Картозия уверен, что прошедший Молодежный форум «Арктика. Сделано в России» станет трамплином для его профессиональной карьеры. Андрей работает инженером в лаборатории геоинформационных технологий и дистанционного зондирования Института геологии и минералогии В.
    2539
  • 22/09/2016

    Минерал-индикатор поможет находить алмазные месторождения

    Российские ученые установили, что высокое содержание хрома в рутиле (минерале-спутнике алмаза) позволяет рассматривать рутил как новый высокоэффективный минерал при поиске алмазных месторождений. Исследования поддержаны Российским научным фондом.
    2237
  • 15/12/2017

    Сможет ли Россия воспользоваться ситуацией на мировом рынке алмазов?

    Глобальный спрос на алмазное сырье будет расти до 4% в год, а предложение - максимумна 1%. Эксперты спорят, сможет ли Россия воспользоваться ситуацией или ее доля на мировом рынке алмазов упадет в связи с катастрофой на кимберлитовой трубке "Мир" в Якутии и остановкой добычи на других месторождениях.
    564
  • 30/10/2017

    Стратегию развития минерально-сырьевой базы РФ представят правительству до конца 2017 года

    ​Разработчики Стратегии развития минерально-сырьевой базы России до 2030 завершают последние согласования и рассчитывают представить ее правительству РФ до конца 2018 года. Об этом сообщил в пресс-центре ТАСС в Новосибирске научный руководитель Института геологии и минералогии СО РАН Николай Похиленко.
    678