​Сотрудники Института лазерной физики СО РАН в лабораторных условиях моделируют плазменный ветер, аналогичный тому, что испускают объекты в сотнях световых лет от Земли. Эти исследования имеют большое значение для изучения состава и динамики верхней атмосферы разных классов экзопланет, в том числе потенциально пригодных для жизни.

«Экзопланеты — это планеты вне Солнечной системы, расположенные около других звезд, — рассказывает заместитель директора по научной работе ИЛФ СО РАН доктор физико-математических наук Ильдар Фаритович Шайхисламов. — Обнаружить их довольно сложно, поэтому космические и наземные телескопы отслеживают не сами объекты, а блеск звезд, вокруг которых они вращаются. Проходя перед диском звезды, планета частично затеняет ее, образуя провал на графике светимости. По ширине, глубине и периодичности этого провала можно судить о размерах планеты и параметрах ее орбиты. Только в последние десятилетия развитие технологий позволило достичь необходимой чувствительности и точности астрономических наблюдений, так что эта область науки очень молодая».
 
Наиболее изученным классом экзопланет являются газовые гиганты, называемые горячими юпитерами. Они располагаются очень близко к материнским звездам: в десять раз ближе, чем Меркурий к Солнцу. Под действием ионизирующего излучения их атмосфера нагревается до сверхвысоких температур: от 1 000 до 4 000 °C. Такие экзопланеты обнаружить проще всего: они имеют небольшой период вращения вокруг звезд — несколько дней, и, кроме того, из-за теплового расширения их радиус намного шире, благодаря чему эти объекты затеняют звезды в определенных спектральных интервалах гораздо сильнее.
 
Подобно Солнцу, горячие экзопланеты выбрасывают в космическое пространство потоки плазмы: под действием ионизирующего излучения материнских звезд их атмосфера нагревается и испытывает сверхзвуковое истечение. «О плазменном ветре экзопланет нам пока практически ничего не известно, поскольку получать качественные наблюдательные данные об этом объекте очень сложно, — говорит Ильдар Шайхисламов. — Изучать явление детально можно только с помощью лабораторных экспериментов и численного моделирования».
 
В рамках проекта «Экзосфера горячих экзопланет и ее наблюдательные проявления», поддержанного грантом РНФ, физики моделируют условия, близкие к тем, что могут существовать в окрестности горячих экзопланет. «У Земли и ряда других планет Солнечной системы имеется дипольное магнитное поле, — комментирует Ильдар Шайхисламов, — предполагается, что и у экзопланет оно может существовать. С помощью особых источников плазмы на конструкции магнитного диполя мы смоделировали высокоскоростной энергетический поток. Аналогичные эксперименты проводились в Японии и США, но мы применили оригинальный подход, благодаря которому удалось получить действительно мощный поток плазмы в сильном магнитном поле. В ходе эксперимента мы наблюдали рождение особой магнитной структуры — магнитодиска».
 
Расчет магнитосферы горячего юпитера HD209458b с магнитным полем величиной 0,3 Гс и 1 Гс на экваторе планеты. В цветовой шкале представлено распределение плотности (в ед. см^-3, логарифмическая шкала) и радиальной скорости течения плазмы (в ед. 10 км/с). Черным показаны силовые линии магнитного поля, серым — силовые линии невозмущенного дипольного поля. Полукруг в центре координат обозначает планету. 
Расчет магнитосферы горячего юпитера HD209458b с магнитным полем величиной 0,3 Гс и 1 Гс на экваторе планеты. В цветовой шкале представлено распределение плотности (в ед. см^-3, логарифмическая шкала) и радиальной скорости течения плазмы (в ед. 10 км/с). Черным показаны силовые линии магнитного поля, серым — силовые линии невозмущенного дипольного поля. Полукруг в центре координат обозначает планету.
 
Изначально исследователи не предполагали, что в ходе экспериментов могут образовываться подобные структуры. Магнитодиски встречаются в Солнечной системе, например на Юпитере, но применительно к экзопланетам они не были изучены. Однако из теоретических работ сотрудников Института космических исследований в Граце Австрийской академии наук новосибирские ученые узнали, что это возможно.
 
В ходе последующих лабораторных экспериментов физики измерили параметры магнитодиска и описали его свойства. Оказалось, что он может сильно менять структуру магнитного поля на далеких расстояниях и влиять на формирование магнитосферы — как и было предсказано в теории. По результатам этих работ сотрудники ИЛФ СО РАН в соавторстве с зарубежными коллегами опубликовали статью в Astrophysical Journal, описывающую результаты лабораторного эксперимента применительно к экзопланетам класса горячих юпитеров. 
 
«Единственное, чего мы не могли воспроизвести в лабораторных экспериментах, — это гравитация, — рассказывает Ильдар Шайхисламов, — смоделировать ее невозможно, хотя этот параметр также имеет важное значение: сверхзвуковое течение плазмы формируется в условиях определенного баланса верхней атмосферы между гравитацией планеты и нагревом звездным излучением».
 
Кооперация ученых, принимающих участие в исследовании, довольно широка. Помимо коллег из Австрии в связке с новосибирскими физиками работают сотрудники ФИЦ «Красноярский научный центр СО РАН». Следующий этап исследований состоял в численном моделировании атмосферы горячих экзопланет, в том числе с учетом гравитации и вращения планеты, к которому подключились математики из Института вычислительных технологий СО РАН.
 
По словам Ильдара Шайхисламова, эта работа имеет большие перспективы. «Знания, полученные нами, имеют универсальный характер и чрезвычайно важны для всей астрофизики в целом. Построив экспериментальные и численные модели, которые будут охватывать все стороны явления, мы получим возможность делать заключения о температуре, концентрации и других параметрах плазменного ветра, — отмечает он. — Более того, взаимодействие обширной планетарной плазмосферы с потоком звездной плазмы вызывает интересные наблюдательные проявления. Например, телескоп Хаббл зарегистрировал значительное поглощение в линии Лайман-альфа атома водорода, вызванное таким взаимодействием. Это открывает перспективы мониторинга космической погоды вокруг других звезд, что является важным фактором для обитаемости экзопланет».
 
Юлия Клюшникова

Похожие новости

  • 19/06/2018

    Ученые ИАиЭ СО РАН помогут телескопу найти темную материю

    ​Специалисты Института автоматики и электрометрии СО РАН в сотрудничестве с немецкой компанией Dioptic разработали голограмму, чтобы настроить четырехлинзовый объектив. Он нужен для работы с ближнеинфракрасным спектрометром и фотометром нового космического телескопа "Евклид", задача которого - исследовать причины расширения Вселенной и найти темную материю.
    461
  • 20/06/2017

    Международная выставка «НТИ ЭКСПО» в Новосибирске

    ​​​Уникальная международная выставка достижений технологического развития "НТИ ЭКСПО" пройдет в рамках V Международного форума технологического развития "Технопром-2017" 20-22 июня в Новосибирске при поддержке правительства РФ, коллегии ВПК, Минпромторга России, Минэкономразвития России, МИДа РФ, правительства Новосибирской области.
    2248
  • 31/05/2016

    Новосибирские ученые исследуют кровеносную систему

    ​Кровеносная система лежит в основе функционирования головного мозга, и в области её работы ещё много «белых» пятен. Сибирские учёные в сотрудничестве с медиками решили устранить некоторые из них.  Исследование имеет и прикладной выход: уже создана уникальная система мониторинга нейрохирургических операций, метод повышения качества магнитно-резонансной томографии, а также инструментарий для персонализированного моделирования протекания некоторых болезней.
    2150
  • 29/08/2018

    В Новосибирске обсудили перспективы развития технологической кооперации науки и производства

    ​Заседание Совета главных инженеров предприятий Сибирского федерального округа на VI Международном форуме и выставке технологического развития "Технопром-2018" было посвящено перспективам развития технологической кооперации науки и производства.
    398
  • 28/07/2017

    Нестоличная наука: новгородские викинги, миниатюрный лазер и нейросеть-кардиолог

    ​​Робот-разведчик, древняя птица, рентгеновская линза и другие открытия и разработки российских ученых, сделанные вне Москвы и Санкт-Петербурга. Великий Новгород Уникальное кладбище X-XI веков обнаружила экспедиция Института археологии РАН при раскопках в центре Новгорода.
    875
  • 01/11/2017

    Сибирские ученые изучили новый тип нанопластин для применения в медицине

    ​Ученые из Института физики имени Л. В. Киренского Красноярского федерального исследовательского центра Сибирского отделения РАН совместно с коллегами из Сибирского федерального университета впервые изучили магнитные свойства, структуру и состав новых наночастиц семейства халькогенидов (элементов 16-й группы периодической системы, к которым относятся кислород, сера, селен, теллур, полоний и ливерморий).
    905
  • 17/03/2017

    Сибирские физики создадут точнейшие атомные часы

    Ученые из Института лазерной физики Сибирского отделения Российской академии наук, Новосибирского государственного университета и из Новосибирского государственного технического университета разработали сверхстабильный лазер для атомных часов, который позволит российским физикам создать устройства для измерения времени, не уступающие в точности западным аналогам, говорится в статье, опубликованной в Journal of Physics: Conf.
    1792
  • 19/12/2018

    Определена оптимальная форма Т-образных микромиксеров

    Ученые из Сибирского федерального университета (СФУ) в сотрудничестве с коллегами из Новосибирска провели численное моделирование перемешивания жидкостей в Т-образных микромиксерах и определили их оптимальную форму.
    617
  • 24/05/2017

    Омские промышленники интересуются разработками СО РАН

    ​​Делегация представителей высокотехнологичной индустрии Омской области посетила институты новосибирского Академгородка. Свыше 20 главных инженеров, конструкторов и специалистов омских предприятий — ФНПЦ «Прогресс», «Омское машиностроительное КБ», «Омсктрансмаш», «Высокие технологии» и «Омский НИИ приборостроения» (ОНИИП) — встретились с председателем Сибирского отделения РАН академиком Александром Леонидовичем Асеевым и его советником доктором физико-математических наук Геннадием Алексеевичем Сапожниковым.
    1361
  • 22/02/2019

    В Институте теплофизики им. С.С. Кутателадзе СО РАН обсудили новейшие разработки для промышленности

    ​На круглом столе, организованном ИТ СО РАН совместно с департаментом промышленности, инноваций и предпринимательства мэрии Новосибирска, представители науки и производства обсудили новейшие разработки института, а также вопросы и проблемы взаимовыгодного сотрудничества.
    99