​Давайте наконец разберемся, что же собираются строить в Академгородке, на что государство выделяет баснословные миллиарды рублей и зачем нам это все нужно?

Коллайдер — это ускоритель элементарных частиц на встречных пучках, предназначенный для изучения продуктов их соударений. Примерно этот процесс можно описать так: в трубе с огромной скоростью несется поток электронов, навстречу ему — поток позитронов, при встрече этих частиц возникают новые, которые и предстоит изучить.


Сегодня в мире работает всего шесть коллайдеров. Самый знаменитый из них, Большой адронный коллайдер, находится в Швейцарии. Кстати, ученые Института ядерной физики СО РАН в свое время приняли самое деятельное участие в его создании. В Америке, в Брукхейвенской национальной лаборатории, есть релятивистский коллайдер тяжелых ионов, начавший работу в 2000 году. В 1999 году был запущен коллайдер DAFNE в лаборатории Фраскати в Италии. Он был одним из первых ускорителей высоких энергий, с помощью только одного эксперимента на нем было получено более ста тысяч гиперионов (частиц атома). За это DAFNE окрестили фабрикой частиц, или Ф-фабрикой. В 2006 году собственный коллайдер запустил Китай.

Рекордная точность

В России сегодня есть два действующих коллайдера, и оба находятся в ИЯФе. Речь идет об уникальной научной установке — комплексе электрон-позитронных коллайдеров ВЭПП-4 — ВЭПП-2000. Его используют для проведения экспериментов по физике высоких энергий, ядерной физике и экспериментов с использованием синхротронного излучения. Стоит отметить, что комплекс является единственной в России установкой со встречными пучками. Его физико-технические параметры таковы, что позволяют осуществлять постановку экспериментов, уникальных не только для России, но и для всего научного мира. Установка из двух коллайдеров дает возможность с рекордной точностью измерить массы элементарных частиц. Что, в свою очередь, можно использовать для описания фундаментальных свойств матери. Иными словами, в ИЯФе изучают, как устроен мир, в котором мы живем.

Разные коллайдеры работают на разных энергиях: больших, малых и промежуточных. По словам сотрудников ИЯФа, коллайдер ВЭПП-2000 действует в сфере малых энергий, и в этой области у него самая большая производительность в мире. Именно здесь рождаются новые методы фун­даментальных исследований. Например, для знаменитого СКИФа (Сибирского кольцевого источника фотонов), который еще только предстоит построить в Кольцово, понадобятся очень тонкие электронные пучки. Технологию их получения отработали как раз на коллайдере Института ядерной физики.

Что интересно, «прародитель» нынешних коллайдеров был построен в ИЯФе еще в семидесятых годах прошлого века. Естественно, со временем возникли новые научные задачи, которые он уже не мог решить. В 2000–2001 годах исходная установка была полностью модернизирована, фактически построена заново, причем все работы были оплачены из бюджета института.


Ловушка для плазмы

Еще одной уникальной научной установкой Института ядерной физики является комплекс длинных открытых ловушек для удержания плазмы. В его состав входят специализированные открытые плазменные ловушки ГОЛ-3 и ГДЛ, предназначенные для создания и магнитного удержания высокотемпературной термоядерной плазмы. Плазма — это ионизированный газ, одно из четырех агрегатных состояний вещества. Почему исследования плазмы так важны? Дело в том, что одним из возможных решений энергетической проблемы считается управляемый термоядерный синтез — энергия, получаемая при слиянии легких ядер. Наибольшие успехи в этой области были достигнуты при помощи нагрева плазмы, удерживаемой в магнитном поле. Тем не менее электростанция на основе управляемого термоядерного синтеза пока не построена.

Институт ядерной физики занимается изучением проблемы управляемого термоядерного синтеза более шестидесяти лет. Сложность в том, что для термоядерных реакций нужны огромные температуры — речь идет о миллионах и миллиардах градусов. На Земле, да и во всей Солнечной системе, таких температур нет. С точки зрения физиков, звезда по имени Солнце — не слишком эффективный реактор. Проблема еще и в том, что при очень высоких температурах, как при термоядерном взрыве, частицы вещества стремятся разлететься. Как же «поймать» их? Основатель Института ядерной физики академик Андрей Михайлович Будкер первым предложил использовать магнитное поле, для того чтобы удерживать плазму.

Одно из направлений исследований — взаимодействие плазмы с электронным пучком. В настоящее время для генерации такого пучка используются мощные источники излучения. Но расчеты показывают, что со временем можно будет построить источник излучения, скажем, размером с письменный стол. Другой способ получения плазмы — с помощью инжектора нейтральных атомов. Сегодня ученые изучают воздействие плазмы на различные вещества. Вопрос имеет в том числе и прикладное значение: если придется строить термоядерный реактор, из чего делать его стенки, чтобы они выдержали контакт с плазмой? Что сможет выстоять при таких температурах? Исследования со временем дадут ответ на этот вопрос.

Куда исчезла антиматерия?

Сегодня ученые Института ядерной физики СО РАН работают над двумя важнейшими проектами класса мегасайенс. Всего в рамках реализации нацпроекта «Наука» таких объектов в России планируют построить шесть, и два из них будут в Новосибирске. Об одном из них, знаменитом СКИФе, создание которого курирует Институт катализа им. Г. К. Борескова СО РАН, написано уже немало. О втором проекте, который носит название «Супер чарм-тау фабрика», известно несколько меньше. Это целиком и полностью разработка ИЯФа. По мнению экспертов, реализация проекта подтолкнет развитие технологий, поспособствует решению мюонной проблемы и, возможно, поможет разгадать загадку антиматерии.

— В нашем коллайдере, я имею в виду «Супер чарм-тау фабрику», будут сталкиваться электроны и позитроны. Ученые надеются, что с ее помощью смогут узнать, почему Вселенная состоит из материи, но в ней совсем нет антиматерии, хотя известно, что на начальном этапе возникновения Вселенной и той, и другой было поровну. Ответ на  вопрос, куда же исчезла антиматерия, до сих пор неясен, — говорит заместитель директора Института ядерной физики им. Г. И. Будкера СО РАН доктор физико-математических наук Евгений Левичев. — Предварительный проект «Супер чарм-тау фабрики» был готов в 2010 году. К концу 2019 года мы должны представить проект и технико-экономическое обоснование, по которому руководство страны примет решение о финансировании коллайдера. Отношение к «Супер чарм-тау фабрике» весьма позитивное. Оценочная стоимость составляет 30–40 миллиардов рублей.

Инна ВОЛОШИНА

Похожие новости

  • 25/05/2018

    Фокусирующий аэрогель поможет распознать частицы в экспериментах на будущем новосибирском коллайдере

    ​Ученые Института ядерной физики им Г.И. Будкера СО РАН разработали проект системы идентификации частиц для экспериментов на будущем новосибирском коллайдере - Супер С-Тау фабрике. Это одна из ключевых систем планируемой установки, она позволит с высокой надежностью определять типы рождающихся в эксперименте частиц.
    581
  • 19/03/2019

    Параметры синхротрона СКИФ будут близки к предельно достижимым

    В Объединенном институте ядерных исследований (ОИЯИ) состоялось заседание Секции ядерной физики Отделения физических наук РАН (СЯФ ОФН РАН), посвященное научно-технологической и производственной кооперации по разработке и созданию на территории Российской Федерации исследовательской инфраструктуры класса «мегасайенс».
    292
  • 03/07/2016

    В ИЯФ пройдет конференция по синхротронному и терагерцовому излучению

    ​С 4 по 8 июля 2016 в Институте ядерной физики СО РАН (ИЯФ СО РАН) состоится Международная конференция по генерации и использованию синхротронного и терагерцового излучения​, посвященная одному из самых "прикладных" направлений, представленных в институте.
    2417
  • 07/05/2018

    В Новосибирске обсудили историю и перспективы установок ИЯФ СО РАН

    На юбилейной конференции «Вклад Г.И. Будкера и его института в мировую науку» физики обсудили историю и перспективы установок ИЯФ СО РАН. Директор ИЯФ СО РАН академик Павел Владимирович Логачёв обозначил цель научного форума: «Еще раз, глубоко и нестандартно, посмотрев на наше прошлое, убедиться в правильности того, что мы собираемся делать в будущем… У института должны быть ясные, четкие цели и ориентиры.
    882
  • 22/01/2019

    Зачем в Европе хотят построить новый коллайдер?

    ​Европейский центр ядерных исследований (ЦЕРН) работает над концепцией нового коллайдера, который будет больше и мощнее ставшего знаменитым БАК. Разбираемся, для чего он нужен. В поисках Новой физикиКогда на Большом адронном коллайдере (БАК) был открыт бозон Хиггса, физики сразу заговорили, что теперь им необходима установка для более тщательного его изучения.
    794
  • 05/03/2018

    Новосибирские физики построят маленький коллайдер для синтеза экзотических атомов

    ​Ученые новосибирского Института ядерной физики Сибирского отделения РАН планируют построить к 2021 году маленький коллайдер, который будет использоваться в том числе для синтеза экзотических атомов, сообщил ТАСС в пятницу замдиректора института по научной работе Евгений Левичев.
    626
  • 06/04/2018

    Павел Логачев: «Как правило, мы специализируемся на том, что никто никогда не делал»

    ​Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) можно считать не только крупнейшим академическим институтом страны и одним из ведущих мировых центров в области физики высоких энергий, но и одним из самых коммерчески эффективных институтов СО РАН.
    728
  • 25/06/2018

    Павел Логачев: источник синхротронного излучения будет центром, который объединит разные научные направления

    ​В проекте Сибирского кольцевого источника фотонов (СКИФ) уже сейчас задействовано много институтов, а в будущем установка станет крупным центром общего пользования. Представители нескольких научных направлений рассказали, почему источник синхротронного излучения (СИ) важен для Академгородка и его ученых.
    657
  • 05/03/2018

    Супер чарм-тау фабрика поможет выйти на новую физику

    ​Реализация проекта Супер чарм-тау фабрики в Новосибирске подтолкнет развитие технологий, необходимых для создания коллайдера, поспособствует решению мюонной проблемы и, возможно, решит загадку антиматерии и поможет выйти на новую физику.
    842
  • 10/03/2017

    В ИЯФ СО РАН проходит собрание международной коллаборации AWAKE

    ​В Институте ядерной физики им. Г.И.Будкера СО РАН проходит собрание международной коллаборации AWAKE, на котором обсуждается новый принцип ускорения заряженных частиц, использующий плазму и протонный пучок.
    1205