​Ученые Сибирского федерального университета (СФУ) в составе международного научного коллектива продлили жизнь особого состояния света, возникающего на границе холестерического жидкого кристалла и слоистой среды. Это поможет создавать устройства для взятия медицинских анализов в домашних условиях. Результаты исследования опубликованы в журнале Crystals.

Оптическое состояние, исследованное научной группой — это сгусток света, который образуется на границе двух различных сред, исполняющих роль зеркал. За счет множественного переотражения в этих зеркалах свет попадает в своеобразную "ловушку" и оказывается "запертым" на границе.

Так, при падении света на границу среды, появляются отраженные и преломленные лучи. В случае предельного угла полного отражения может возникать луч, скользящий вдоль границы - световая поверхностная волна.

"В отличие от других поверхностных волн, в случае луча, падающего перпендикулярно поверхности, волна останавливается и не переносит энергию вдоль границы. Такое явление называют таммовским оптическим состоянием", - рассказал руководитель научной группы, профессор кафедры теоретической физики и волновых явлений СФУ Степан Ветров.

Остановившийся свет получилось закрутить как юлу, с помощью холестерического жидкого кристалла. Этот жидкий кристалл не обладает зеркальной симметрией, потому что состоит из ориентированных продолговатых молекул, направление которых закручивается в спираль, подобно винтовой лестнице.

Получившийся "световой волчок" живет дольше обычных волн. Ученые дали ему название - хиральное оптическое таммовское состояние.

"Очень важно, что новое состояние оказалось относительно долгоживущим - оно длится пикосекунды. За это время свет успевает отразиться от зеркал тысячи раз. Рассчитываем, что наши исследования помогут со временем создать новые типы микролазеров и биосенсоров", - прокомментировала доцент кафедры физики СФУ Наталья Рудакова.

По словам ученых, полученные биосенсорные системы будут чрезвычайно высокочувствительными, что позволит проводить анализ крови на дому и получать быстрый, точный результат. И это не все из возможных новинок, которые могут войти в нашу действительность благодаря открытию физиков.

Совместно с СФУ в исследовании принимали участие ученые из Института физики им. Л. В. Киренского ФИЦ КНЦ СО РАН и Национального университета Чиао-Тун (Тайвань).

Источники

Запертый сгусток света поможет в создании устройства для анализов на дому
News2world.net, 20/11/2019
Запертый сгусток света поможет в создании устройства для анализов на дому
РИА Новости, 20/11/2019
Запертый сгусток света поможет в создании устройства для анализов на дому
Новости@Rambler.ru, 20/11/2019
"Остановленный" свет поможет усовершенствовать медицинские сенсоры
Научно-инновационный портал СФУ (research.sfu-kras.ru), 21/11/2019
"Остановленный" свет поможет усовершенствовать медицинские сенсоры
Сибирский федеральный университет (sfu-kras.ru), 21/11/2019
Ученые СФУ совместно с коллегами из ИФ СО РАН и из-за рубежа научились "останавливать" свет
Научная Россия (scientificrussia.ru), 29/11/2019
Ученые СФУ совместно с коллегами из ИФ СО РАН и из-за рубежа научились "останавливать" свет
1k.com.ua, 29/11/2019
Ученые СФУ совместно с коллегами из ИФ СО РАН и из-за рубежа научились "останавливать" свет
Seldon.News (news.myseldon.com), 28/11/2019
Ученые СФУ научились "останавливать" свет
Российская национальная нанотехническая сеть (rusnanonet.ru), 29/11/2019
"Остановленный" свет поможет усовершенствовать медицинские сенсоры
Nanonewsnet.ru, 01/12/2019
Красноярские и зарубежные ученые изучили особое состояние света
РИА Сибирь (ria-sibir.ru), 02/12/2019

Похожие новости

  • 24/01/2017

    Красноярские ученые рассчитали, как поймать свет с помощью диэлектрических шариков

    ​Теоретические расчеты красноярских физиков показали, что цепочка из одинаковых диэлектрических шариков может быть использована в качестве ловушки для электромагнитных волн. Такая цепочка будет вести себя как световод, который улавливает и захватывает свет, падающий на него под любым углом.
    1284
  • 24/06/2019

    В Сибири работают над электроникой будущего

    ​Ученые Сибирского федерального университета (СФУ) и Института физики имени Л.В. Киренского СО РАН создали самоорганизующийся шаблон из кремнезёма для прозрачных электродов на гибкой подложке, эффективный при разработке современных гибких дисплеев и светодиодов.
    394
  • 19/09/2017

    Квантовые симуляторы: как ученые создают искусственные миры

    ​Представьте, что вы хотите рассмотреть быструю, но хрупкую бабочку. Пока она порхает, детально изучить ее довольно трудно, поэтому нужно взять ее в руки. Но как только она оказалась в ваших ладонях, крылышки смялись и потеряли цвет.
    1171
  • 04/12/2019

    Создана первая российская установка для синтеза тонких оксидных пленок

    ​Красноярские ученые создали установку для формирования прозрачных оксидных пленок с регулируемой толщиной. Благодаря особенностям конструкции, на ней можно быстрее и эффективнее, чем на большинстве зарубежных аналогов устройства, проводить синтез химических покрытий на неорганической основе.
    131
  • 13/04/2018

    Дилатометр измерит деформации космических материалов в вакууме

    Ученые из Института физики им. Л.В. Киренского Федерального исследовательского центра Красноярский научный центр СО РАН (ФИЦ КНЦ СО РАН) разработали измерительную ячейку для исследования свойств материалов при температурах близких к абсолютному нулю.
    819
  • 14/05/2018

    Сибирские ученые опробовали новый метод исследования полупроводниковых наночастиц

    ​Сотрудники Сибирского федерального университета и Института физики имени Л. В. Киренского СО РАН применили новый метод для изучения наночастиц из кадмия и теллура. Они воспользовались особенностью данного соединения, взаимодействие которого со светом меняется в зависимости от магнитного поля.
    833
  • 15/02/2017

    Красноярские ученые создали уникальный прибор для телескопа будущего

    Ученые в Красноярске создали уникальный прибор для телескопа, который планируют запустить космос не раньше 2025 года. Как сообщили в пресс-службе правительства края, ученые Института физики им Л.В. Киренского Красноярского научного центра СО РАН создали прибор для измерения термооптических свойств защитных покрытий и материалов космических аппаратов при сверхнизких температурах.
    1414
  • 15/12/2017

    Химики создали новый класс люминофоров для электронной промышленности

    ​Международный коллектив химиков из Китая, России и Японии синтезировал новое кристаллическое вещество на основе оксидов редкоземельных металлов, а также описал его структуру и свойства. Расшифровка рентгенограммы нового соединение установила, что он относится к новому, ранее неизвестному классу.
    1223
  • 24/04/2018

    Как сделать жилье более доступным и экологичным?

    ​​Дом - это что-то теплое, уютное и, на первый взгляд - очень консервативное. Но на самом деле и строительство попевает за техническим прогрессом. Как сделать жилье более доступным, дешевым, экологичным? Мы создали краткий обзор тенденций и технологий будущего, которые появляются уже сейчас.
    1184
  • 30/11/2018

    Энергоэкономные технологии для науки и промышленности

    ​В Институте физики им. Л. В. Киренского (ФИЦ КНЦ) СО РАН учёные разработали энергосберегающую технологию получения разнообразных редких кристаллов. Многие полезные для промышленности и научных исследований кристаллы растут из оксидов, которые плавятся при очень высоких температурах (в природе - путём кристаллизации в расплавленной магме).
    656