​Международная группа ученых обнаружила, что полупроводниковые структуры на основе твердых растворов кадмий-ртуть-теллур, способны генерировать лазерное излучение в терагерцовом диапазоне. Более того, используя слабое магнитное поле, можно менять длину волны лазера (что важно для технологических применений).

Ранее попытки сделать подобные источники когерентного излучения терпели неудачу. В успешном эксперименте приняли участие исследователи Института физики полупроводников им. А. В. Ржанова СО РАН, синтезировавшие материал требуемого состава. Подробности опубликованы в журнале Nature Photonics.

 

1. Полупроводниковая гетероструктура, выращенная на основе твердого раствора Cd-Hg-Te.jpg 

Полупроводниковая гетероструктура, выращенная на основе твердого раствора кадмий-ртуть-теллур

Терагерцовое излучение проникает сквозь различные вещества, не нарушая их структуру, и поэтому может использоваться в диагностической медицине, системах безопасности, научных целях, для неразрушающего контроля качества материалов.  Чтобы реализовать эти применения, нужны переносные источники излучения небольшого размера, перспективные материалы для их разработки — полупроводниковые структуры. Для создания с помощью последних лазерного луча, генерируется избыточное  количество электронов в возбужденном (высокоэнергетическом) состоянии. Обратный переход электронов из возбужденного состояния в обычное сопровождается либо испусканием фотонов, либо безызлучательным процессом — преимущественно Оже-рекомбинацией. Если ее скорость существенно меньше скорости испускания фотонов, тогда возникает когерентное (лазерное) излучение.

2. установка молекулярно-лучевой эпитаксии, на которой выращены полупроводниковые структуры Cd-Hg-Te.jpg 

Установка молекулярно-лучевой эпитаксии в Институте физики полупроводников им. А.В. Ржанова СО РАН, на которой выращены полупроводниковые структуры кадмий-ртуть-теллур

Автор фото: Виктор Яковлев

Довольно давно теоретиками была предложена концепция лазера на уровнях Ландау: в таком приборе можно управлять длиной волны, изменяя магнитное поле и добиться излучения в терагерцовом диапазоне. Но до сих пор надежное устройство подобной конструкции не было реализовано, именно из-за эффекта Оже-рекомбинации.

«Мы вырастили полупроводниковую наноструктуру на основе твердого  раствора кадмий-ртуть-теллур с составом, в котором наблюдается безщелевой энергетический спектр — то есть ширина запрещенной зоны полупроводника равна нулю. Большая группа наших коллег из совместной международной лаборатории (Laboratory of Terahertz and Mid-Infrared collective Phenomena in Semiconductor Nanostructures, TERAMIR), включая ученых из Франции, Германии и Польши провела исследования новых структур и экспериментально пронаблюдала подавление Оже-рекомбинации до трех порядков, что открывает перспективы для создания терагерцовых лазерных структур. Вырастить требуемый полупроводниковый материал непросто: в каждой его точке должен соблюдаться определенный состав с нужными концентрациями кадмия, теллура и ртути, и флуктуации состава должны быть минимальны. Невозможно избежать их полностью, но они тем меньше, чем ниже температура роста. Мы использовали метод молекулярно-лучевой эпитаксии, он позволяет выбрать минимальные ростовые температуры по сравнению с другими способами и вырастить кристаллические пленки нанометровой толщины заданного состава. Причем последний можно контролировать на атомарном уровне», — пояснил старший научный сотрудник лаборатории молекулярно-лучевой эпитаксии соединений A2B6 ИФП СО РАН кандидат физико-математических наук Николай  Николаевич Михайлов.

В ИФП СО РАН ведутся многолетние исследования по разработке структур на основе теллурида кадмия и ртути, которые преимущественно используются в фотоприемниках инфракрасного излучения. У этого полупроводникового материала изменяется ширина запрещенной зоны в зависимости от соотношения кадмия и ртути в твердом растворе. Запрещенная зона — энергия, нужная электрону для перехода из валентной зоны в зону проводимости. Проще говоря, когда электроны преодолевают запрещенную зону, полупроводник начинает проводить ток.

«Твердый раствор теллурида кадмия и ртути при малом содержании последней переходит в инвертированное состояние, где зона проводимости и валентная зона как бы меняются местами. Существует критическая точка по составу, в которой ширина запрещенной зоны равна нулю, и энергетический спектр становится подобным графену», — отметил Николай Михайлов.

В этом случае при приложении к такой структуре магнитного поля происходит нехарактерное для обычного полупроводника неэквидистантное распределение уровней Ландау — уровней энергий свободных электронов в магнитном поле. Неэквидистантность означает то, что энергетическое расстояние между соседними уровнями неодинаково.  Как следствие, Оже- рекомбинация становится практически невозможна, а электроны, переходя с высокоэнергетического состояния в низкоэнергетическое («спускаясь по лестнице уровней энергии») испускают фотоны — возникает лазерное излучение.

Проведенные исследования показали, что материал на основе твердых растворов теллурида кадмия и ртути с составом, соответствующим безщелевому энергетическому спектру перспективен для создания компактного лазера для терагерцовых и инфракрасных областей спектра с перестраиваемой малыми магнитными полями длиной волны излучения.

Однако пока ключевое препятствие для широкомасштабного использования такого устройства — необходимость соблюдения рабочей температуры, близкой к абсолютному нулю.

Пресс-служба ИФП СО РАН

Физики разработали материал для генерации лазерного излучения, проникающего сквозь различные вещества.docx

Источники

Физики создали не разрушающий структуру веществ материал для лазерного излучения
Новости@Rambler.ru, 25/12/2019
Физики создали не разрушающий структуру веществ материал для лазерного излучения
Взгляд.Ру, 25/12/2019
Физики разработали материал для терагерцового лазера
Новосибирские новости (nscn.ru), 25/12/2019
Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук
ФСМНО (sciencemon.ru), 25/12/2019
Физики создали не разрушающий структуру веществ материал для лазерного излучения
Око планеты (oko-planet.su), 25/12/2019
Новый материал для лазерного излучения не разрушает структуру веществ
ТАСС, 25/12/2019
Физики создали не разрушающий структуру веществ материал для лазерного излучения
НАРОДедин (narodedin.com), 25/12/2019
Физики создали не разрушающий структуру веществ материал для лазерного излучения
РЫБИНСКonLine (ryb.ru), 25/12/2019
Физики создали материал, генерирующий терагерцевое излучение
Vevby.ru, 25/12/2019
Ученые ИФП СО РАН разработали материал, подходящий для создания перестраиваемых лазеров терагерцового диапазона
Сибирское отделение Российской академии наук (sbras.ru), 26/12/2019
Пульс дня Новосибирска
Честное слово (chslovo.com), 26/12/2019
Новосибирские физики с иностранными коллегами разработали материал для создания лазерного излучения, проникающего сквозь различные вещества
Новосибирский государственный университет (nsu.ru), 27/12/2019
Новосибирские ученые-физики создали материал для генерации лазерного излучения
РИА Сибирь (ria-sibir.ru), 27/12/2019
Физики разработали материал для генерации терагерцового лазерного излучения
Индикатор (indicator.ru), 29/12/2019
Физики разработали материал для генерации терагерцового лазерного излучения
Новости@Rambler.ru, 29/12/2019
Физики разработали материал для генерации терагерцового лазерного излучения
Wi-fi.ru, 29/12/2019
Физики разработали материал для генерации терагерцового лазерного излучения
Seldon.News (news.myseldon.com), 29/12/2019
Физики разработали материал для генерации терагерцового лазерного излучения
Автономная некоммерческая организация Социально-правовая защита спортсменов Достоинство (dostoinstvo2017.ru), 01/01/2020
Ученые НГУ вырастили наноструктуру для создания проникающего лазерного излучения (3 фото)
Fishki (fishki.net), 26/01/2020

Похожие новости

  • 16/07/2020

    ИФП СО РАН: подробности о деятельности подразделений и перспективах для молодых сотрудников

    ​Принять новых сотрудников готовы двадцать семь научных подразделений института, среди которых две молодежные лаборатории ― ближнепольной оптической спектроскопии и наносенсорики и нанотехнологий и наноматериалов.
    590
  • 22/08/2018

    Учеными впервые запечатлены флуктуации при квантовом фазовом переходе

    Физики впервые смогли напрямую зафиксировать локальную динамику системы, которая совершает квантовый фазовый переход, — аналог таких процессов, как конденсация и кристаллизация. В результате ученые пронаблюдали квантовый аналог пузырей пара, которые появляются в воде во время кипения.
    1563
  • 13/03/2020

    Первый отечественный детектор для системы квантовой связи создают в России

    ​Группа российских ученых разрабатывает первый отечественный детектор одиночных фотонов для использования в линии квантовой связи. Устройство позволит в несколько раз повысить качество и устойчивость связи и существенно сократить размеры оборудования для квантовой передачи информации, сообщили в четверг ТАСС в пресс-службе Российской венчурной компании (РВК).
    620
  • 21/04/2020

    Ученые ИФП СО РАН в составе международного коллектива исследователей получили квантовые точки, облучив фторированный графен высокоэнергетичными ионами

    ​Специалисты Института физики полупроводников им. А. В. Ржанова СО РАН, Института биохимической физики им. Н. М. Эмануэля РАН, Объединенного института ядерных исследований вместе с коллегами из других научных организаций России, Польши и Франции сформировали графеновые островки (квантовые точки) сверхмалого размера ― единицы нанометров, ― заключенные в непроводящую матрицу.
    496
  • 23/08/2019

    Академик Александр Латышев: эволюция научных школ невозможна без движения и даже турбуленции

    С самого своего рождения микро- и наноэлектроника развивается такими бешеными темпами, как никакая другая отрасль. И все это происходит буквально на наших глазах. К примеру, каждые два года мы в принципе должны выбрасывать свои сотовые телефоны и покупать новые, потому что элементная база реально меняется в два раза.
    957
  • 29/08/2018

    В Новосибирске обсудили перспективы развития технологической кооперации науки и производства

    ​Заседание Совета главных инженеров предприятий Сибирского федерального округа на VI Международном форуме и выставке технологического развития "Технопром-2018" было посвящено перспективам развития технологической кооперации науки и производства.
    1224
  • 07/11/2019

    Масштабный проект по созданию квантового компьютера запускает Росатом

    Госкорпорация "Росатом" запустила масштабный проект по созданию отечественного квантового компьютера и библиотеки квантовых алгоритмов. Проектный офис по реализации этой инициативы, чей бюджет составит 24 млрд рублей, возглавил Руслан Юнусов, генеральный директор Российского квантового центра.
    883
  • 31/10/2016

    Сибирский ученый представил результаты исследований на конференции по когерентной и нелинейной оптике

    ​С каждым годом учёные приближаются к созданию квантового компьютера, в том числе и специалисты из Новосибирского государственного университета и Института физики полупроводников (ИФП) СО РАН. Результаты последних достижений новосибирских физиков в области создания квантового компьютера были представлены на Международной конференции по когерентной и нелинейной оптике ICONO/LAT 2016, которая прошла в Минске.
    3174
  • 07/02/2018

    «Экран-оптические системы» будет работать по технологиям ИФП СО РАН

     Институт физики полупроводников им А. В. Ржанова СО РАН и АО «Экран-оптические системы» подписали соглашение о сотрудничестве, в рамках которого в институт будет поставлено промышленное оборудование для производства полупроводниковых гетероструктур — необходимого компонента электронной базы современных телекоммуникационных систем, систем связи и цифровой экономики.
    1608
  • 29/01/2020

    Новосибирские ученые исследуют действие холодной плазмы на раковые клетки

    Совместный проект Института физики полупроводников им. А. В. Ржанова СО РАН, Института химической биологии и фундаментальной медицины СО РАН, Института теоретической и прикладной механики СО РАН направлен на развитие оригинального метода противораковой терапии с использованием холодной плазменной струи.
    863