​​Ученые Томского политехнического университета вместе с коллегами из Сибирского отделения РАН и Новосибирского государственного университета синтезировали новые стабильные органические радикалы с магнитными свойствами. Получать подобные соединения крайне сложно. Ученые применили новый подход к синтезу, что позволило сократить число стадий и упростить процесс. Результаты работы опубликованы в одном из самых престижных научных журналов по химии — Angewandte Chemie International Edition (IF: 12,959; Q1). 

Первые органические магнитные соединения были созданы в 1985 году, но до сих пор их не так много. В перспективе органические магниты могут стать альтернативой кремнию и металлам, используемым в электронике. 

Из всех органических магнитов наиболее перспективными считаются стабильные радикалы. Это связано с особенностями их внутренней структуры. С ними и работают ученые Томского политеха. 

«Стабильные радикалы — это органические молекулы, у которых не хватает одного электрона. И если обычные радикалы живут буквально доли секунд, так как стремятся побыстрее восполнить нехватку электрона и вступить в реакцию с другими молекулами, то стабильные представители могут жить даже годы. Поэтому с ними можно работать. 

В своих исследованиях мы ищем наиболее простые способы комбинации стабильных радикалов между собой, продукты таких реакций могут обладать очень интересными свойствами. Например, в данной работе мы презентовали сразу три новые молекулы, одна из которых представляет особый интерес», — говорит один из авторов статьи, ассистент Исследовательской школы химических и биомедицинских технологий ТПУ Павел Петунин

Сам процесс соединения двух радикалов крайне сложный. Он требует тщательного подбора условий, при этом точных методов для моделирования реакций и прогнозирования результата нет. Поэтому каждую новую молекулу такого типа можно назвать событием в мире органической химии. 

«Обычно для синтеза новой молекулы используется 10-15 последовательных превращений. Мы предложили другой подход: взять два радикала разного типа (вердазильный и нитронил-нитроксильный) и сложить их вместе, как детальки от пазла, посредством одной реакции, — отмечает ученый. — Это, а также конечная реакция, предложенная нашими новосибирскими коллегами, позволило сократить число стадий в синтезе до восьми. Это существенное упрощение для химиков. В итоге, чтобы нам что-то изменить в синтезе, попробовать другие исходные элементы, у нас уходит день-два, у других групп на те же действие может уйти месяц».​ 

Одна из полученных молекул представляет особый интерес благодаря сочетанию стабильности (выдерживает нагревание до 200 градусов по Цельсию) и свойств. Например, у молекулы высокий показатель спин-спинового обмена между двумя радикалами, входящими в ее состав. 

«Между радикалами правильное расстояние, которое обеспечивает хороший обмен межу ними. Что это дает? Это значит, что у получившейся молекулы большая энергетическая щель — разница между низколежащим и высоколежащим энергетическими уровнями. Чем эта щель больше, тем в перспективе лучше для различного рода применений. Этот переход между низким уровнем энергии и высоким должен быть предсказуемым и управляемым. Это напрямую связано с величиной энергетической щели. Чем она больше, тем проще работать с этими молекулами», — говорит ученый. 

По словам исследователя, в дальнейшем ученые будут искать возможности для практического применения полученных соединений. 

«Это исследование междисциплинарное, результат сотрудничества целого ряда организаций — как университетов, так и академических институтов — под руководством доцента Павла Постникова, профессора Евгения Третьякова, академика Виктора Овчаренко. Особая роль в работе принадлежит молодому руководителю уже собственной научной группы — ассистенту Павлу Петунину. У нас действует программа развития молодых исследователей, которая приносит свои плоды в становлении молодежных научных групп. Мы прилагаем усилия для создания комфортной научной среды, даем ученым возможность воплощать свои идеи в реальность. Научная группа Павла Петунина — это пример того, как аспирант, защитив кандидатскую диссертацию, остается в университете и начинает свое направление, создает свою группу», — говорит директор Исследовательской школы химических и биомедицинских технологий ТПУ Марина Трусова

Справка: 
Авторы статьи — ученые из Томского политехнического университета, Новосибирского института органической химии им. Н.Н. Ворожцова СО РАН, Института химической кинетики и горения им. В.В. Воеводского СО РАН, Международного томографического центра СО РАН и Новосибирского государственного университета. 

Похожие новости

  • 20/03/2018

    В Новосибирске обсудили актуальные проблемы органической химии

    ​В новосибирском Академгородке прошла всероссийская молодежная научная школа-конференция «Актуальные проблемы органической химии», собравшая 190 участников из России, Казахстана, США, Франции и Японии.
    1931
  • 04/09/2016

    IV Молодёжная школа «Магнитный резонанс и магнитные явления в химической и биологической физике»

    ​С 4 по 8 сентября 2016 г. в новосибирском Академгородке пройдет IV Молодежная школа с международным участием "Магнитный резонанс и магнитные явления в химической и биологической физике".
    4105
  • 18/10/2019

    L’OREAL — UNESCO: они этого достойны

    Три молодых исследовательницы из Новосибирска вошли в число десяти лауреаток конкурса «Для женщин в науке» L’OREAL — UNESCO 2019. Его цель — улучшение позиций женщин-ученых и признания их заслуг. Мы поговорили с победительницами об их работе и о препятствиях, которые им приходится преодолевать.
    1334
  • 08/11/2018

    Профессор Елена Багрянская - созидатель, который ведет за собой

    ​Директор Новосибирского института органической химии им. Н.Н. Ворожцова СО РАН доктор физико-математических наук, профессор Елена Григорьевна Багрянская отмечает 60-летие. Она прошла путь от научного сотрудника до руководителя института и является одной из женщин-ученых, чье имя известно не только в России, но и за пределами страны.
    1500
  • 22/01/2020

    Квантовая химия как способ дополнить эксперимент тонкими деталями

    ​Сотрудники Института химической кинетики и горения им. В. В. Воеводского СО РАН занимаются квантовой химией — их расчеты помогают в разработке одномолекулярных магнитов для электроники, ракетных топлив и подушек безопасности для автомобилей.
    2509
  • 20/06/2018

    Возможные перспективы Академгородка 2.0

    ​Ведущие ученые СО РАН продолжили обсуждение проектов развития научной инфраструктуры Новосибирского научного центра. Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН выступил инициатором проекта «Сибирский центр малотоннажной химии».
    2014
  • 24/09/2018

    Журнал Mendeleev Communications опубликовал Focus Article сибирских учёных

    Журнал Mendeleev Communications опубликовал Focus Article сибирских учёных, посвященную новому научному направлению, созданному в ННЦ СО РАН и получившему международное признание. Авторы – сотрудники НИОХ, ИНХ и ИХКГ СО РАН, связанные также с ФЕН и ФФ НГУ.
    1193
  • 24/12/2019

    Химики ТПУ в сотрудничестве с учеными СО РАН будут разрабатывать биологически активные соединения на основе ацетилена

    В Исследовательской школе химических и биомедицинских технологий Томского политеха формируется новая научная группа. Совместно с учеными из Института химической кинетики и горения СО РАН под руководством профессора Сергея Василевского политехники будут вести исследования в новом для вуза направлении — химии ацетилена.
    518
  • 09/06/2016

    Надежда на прорыв: медики сотрудничают с институтами СО РАН

    Надежда на прорыв. Именно такими словами учёные Новосибирского НИИ туберкулёза Минздрава РФ охарактеризовали начало совместной работы с коллегами из институтов Сибирского отделения РАН - Институтом химической кинетики и горения, Институтом органической химии, Институтом теоретической и прикладной механики​.
    2189
  • 08/11/2019

    Научный подход: работа сотрудников МТЦ и НИОХ СО РАН

    ​В недавней совместной работе сотрудников Международного томографического центра и специалистов НИОХ СО РАН впервые показано, что фотовозбужденные триплетные фуллерены могут быть успешно использованы как спиновые метки для измерения расстояний на нанометровой шкале в биомолекулах с помощью спектроскопии электронного парамагнитного резонанса (ЭПР).
    612