Российские химики получили новый фотохромный — способный менять цвет при освещении — комплекс висмута (III) с так называемыми виологеновыми катионами. На основе этого соединения были созданы элементы оптической памяти и показаны их высокая эффективность и стабильность. Исследование, поддержанное грантом Президентской программы Российского научного фонда (РНФ), в перспективе поможет расширить элементную базу для микроэлектроники. Результаты работы опубликованы в журнале Chemical Communications. 

Современные устройства памяти (карты памяти, SSD-накопители) построены на основе электрических переключателей, или транзисторов. Они могут формировать два квазистабильных электрических состояния: «открытого», способного обеспечить перенос электронов, и «закрытого», блокирующего этот поток. Транзисторы содержат элементы, которые накапливают и удерживают электрический заряд. От величины этого заряда зависит возможность протекания электрического тока при определенном приложении напряжения к выводам транзистора. В элементах памяти «открытое» состояние кодирует логическую единицу, а «закрытое» — нуль, или наоборот. Чтобы записать или стереть один бит информации нужно просто переключить транзистор между этими состояниями. При использовании фотохромных материалов для накопления и удерживания зарядов переключение требует светового импульса, часто в совокупности с наложением электрического поля. 

Виологеновые катионы состоят из двух связанных ароматических пиридиновых колец (C10H8N2R2)2+ с двумя заместителями (R) при атомах азота. Некоторые галогенидные, то есть содержащие элементы седьмой группы таблицы Менделеева (F, Cl, Br, I), комплексы металлов с виологенами могут изменять цвет при освещении. Несмотря на всю привлекательность оптоэлектронных характеристик этих соединений, пока что такие комплексы не находили применения в электронике. В своей работе ученые из Сколковского института науки и технологий (Москва), Института проблем химической физики РАН (Черноголовка) и Института неорганической химии имени А. В. Николаева Сибирского отделения РАН (Новосибирск) впервые получили светочувствительный комплекс висмута с оптимальными свойствами и показали возможность его использования как материала в устройствах для записи и хранения информации. 


схема_транзистора.jpeg 
Схема органического светочувствительного полевого транзистора на основе исследованных фотохромных комплексов висмута с виологеновыми катионами. Внизу слева показано изображение поперечного разреза элемента, полученное с помощью сканирующей электронной микроскопии. Источник: Dashitsyrenova et al. / Chemical Communications, 2020​ 

«Дело в том, что фотохромные свойства подобных комплексов были описаны ранее. Одновременно с этим были получены устройства памяти на других виологенсодержащих соединениях. По сути, мы просто совместили эти два факта и попробовали проверить, как это сработает уже на наших, новых соединениях», — поясняет руководитель проекта по гранту РНФ Сергей Адонин, доктор химических наук, ведущий научный сотрудник лаборатории синтеза комплексных соединений Института неорганической химии СО РАН

​​​Исследователи «собрали» органические полевые транзисторы с дополнительным светочувствительным слоем из комплекса висмута с виологеновыми катионами. Для этого на промежуточном этапе «сборки» они осадили кристаллические пленки комплекса из раствора на диэлектрическом слое оксида алюминия. Ученые выяснили, что устройство можно «программировать», то есть обратимо переключать между двумя или даже несколькими квазистабильными электрическими состояниями. Для этого нужно подать импульс света при одновременном наложении электрического потенциала между электродами устройства. Реализация нескольких состояний в одном транзисторе открывает большие возможности для создания мультибитных элементов памяти для записи информации с высокой плотностью. 

За полсекунды программирования ток, текущий через канал транзистора, изменяется в 100 раз, а при увеличении времени до нескольких десятков секунд — в 10 000 раз. Этот показатель указывает на высокую эффективность работы устройства и является одним из лучших среди известных органических светочувствительных полевых транзисторов. Авторы предполагают, что разработанные устройства позволят длительное время хранить записанную информацию и будут выдерживать большое число циклов записи-чтения-стирания. В работе уже продемонстрирована стабильность в течение более 200 циклов. 

Пресс-служба РНФ  

Источники

Фотохромные комплексы станут перспективными материалами для оптических элементов памяти
Российский научный фонд (rscf.ru), 22/07/2020
Фотохромные комплексы станут перспективными материалами для оптических элементов памяти
Поиск (poisknews.ru), 22/07/2020
Российские химики создали основу для быстрой оптической памяти
Российский научный фонд (рнф.рф), 22/07/2020
Российские химики создали основу для быстрой оптической памяти
Российский научный фонд (rscf.ru), 22/07/2020
Российские химики создали основу для быстрой оптической памяти
ТАСС, 22/07/2020
Фотохромные комплексы станут перспективными материалами для оптических элементов памяти
Российский научный фонд (rscf.ru), 22/07/2020
Ученые создали висмутовые транзисторы для оптических элементов памяти
24ТОП.kz (24top.kz), 23/07/2020
Ученые создали висмутовые транзисторы для оптических элементов памяти
Газета.Ru, 23/07/2020
Ученые создали висмутовые транзисторы для оптических элементов памяти
News-Life (news-life.pro), 23/07/2020
Для оптической памяти разработали фотохромные комплексы висмута
Индикатор (indicator.ru), 23/07/2020
Для оптической памяти разработали фотохромные комплексы висмута
Рамблер/новости (news.rambler.ru), 23/07/2020
Фотохромные комплексы станут перспективными материалами для оптических элементов памяти
Российская академия наук (ras.ru), 23/07/2020
Ученые создали висмутовые транзисторы для оптических элементов памяти
Рамблер/новости (news.rambler.ru), 23/07/2020
Ученые создали висмутовые транзисторы для оптических элементов памяти
123ru.net, 23/07/2020
Фотохромные комплексы станут перспективными материалами для оптических элементов памяти
О химии и химиках (mendeleev.info), 24/07/2020
Ученые создали висмутовые транзисторы для оптических элементов памяти
Сколково (sk.ru), 24/07/2020
Чувствительный к свету комплекс висмута стал основой для оптических элементов памяти
Открытая наука (openscience.news), 24/07/2020
Фотохромные комплексы станут перспективными материалами для оптических элементов памяти
Сколково (sk.ru), 27/07/2020

Похожие новости

  • 03/01/2019

    Обнаружены особенности образования соединений, мешающих добыче нефти и газа

    ​​Ученые из Института неорганической химии имени А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН) исследовали реакцию образования кристаллических соединений воды и газа (газовых гидратов) с метастабильной (неустойчивой) структурой.
    1563
  • 08/10/2017

    Секреты картин и криминал: как ученые из России помогают британской полиции

    ​Сергей Казарян, профессор физической химии из Имперского колледжа Лондона, рассказал, как современные методы химии и физики позволяют вычислять преступников по химическим следам отпечатков пальцев, раскрывать фальшивки и изучать историю давно минувших дней.
    1304
  • 13/05/2020

    Диоксид кремния и наночастицы золота увеличили чувствительность газовых сенсоров в 4 раза

    ​​Вместе эти две добавки увеличивают чувствительность детектора к бензолу и этанолу более чем в четыре раза даже в условиях влажного воздуха. Такие сенсоры могут позволить обезопасить работников промышленных предприятий.
    422
  • 11/10/2018

    Новый способ получения наноразмерных порошков и суспензий с помощью терагерцового излучения

    Специалисты Института химической кинетики и горения им. В.В. Воеводского СО РАН совместно с коллегами из Института ядерной физики им. Г.И. Будкера СО РАН провели серию экспериментов, в ходе которых образцы различных твердых материалов с тонким слоем воды на поверхности — среди них, например, латунь, свинец, а также углерод — облучали сфокусированным терагерцовым излучением.
    810
  • 24/12/2019

    Выбор РИА Новости: главные достижения российской науки 2019 года

    ​Ученые в России в нынешнем году получили знаковые результаты в самых разных областях – от астрономии до археологии, причем многие достижения имеют выходы на практическое применение. Примечательно, что существенную лепту здесь внесли не только признанные научные центры, но и ведущие отечественные вузы.
    875
  • 03/09/2018

    Ученые рассчитали параметры устойчивости гибридных фотоэлектрических наноматериалов

    ​​Сибирские ученые совместно с иностранными коллегами рассчитали, какие параметры влияют на силу взаимодействия углеродных нанотрубок с фталоцианинами – сложными азотсодержащими соединениями. Гибридные конструкции на их основе можно использовать в качестве новых материалов для создания солнечных батарей, сенсоров и оптических приборов.
    925
  • 12/12/2017

    Новосибирские и московские ученые разработали антитела для диагностики грибковых заболеваний

    ​Исследователи из Института химической биологии и фундаментальной медицины СО РАН совместно с коллегами из Института органической химии им. Н. Д. Зелинского РАН создали новый высокоэффективный диагностикум аспергиллезов, который поможет отличить эти заболевания от других подобных и быстро подобрать правильное лечение.
    1130
  • 14/07/2020

    Сибирские ученые разрабатывают антираковые препараты нового поколения на основе альбумина

    ​Ученые из Института химической биологии и фундаментальной медицины СО РАН в сотрудничестве с коллегами из ФИЦ «Институт цитологии и генетики СО РАН», Новосибирского института органической химии им. Н.
    913
  • 06/01/2019

    Российские химики раскрыли тайну рождения арктического «метана-убийцы»

    Химики из России выяснили, как формируются нестабильные кристаллы метановых гидратов – "замороженной" разновидности природного газа, вызывающей взрывы на дне морей Арктики. Их выводы были представлены в Journal of Natural Gas Science and Engineering.
    1745
  • 09/04/2019

    Сибирские ученые оптимизируют работу электронных дисплеев органическими полупроводниками

    ​Ученые Новосибирского государственного университета (НГУ) займутся исследованием свойств органических полупроводников (материалов, используемых в электронике), чтобы повысить эффективность используемых сейчас электронных дисплеев, сообщил ТАСС руководитель лаборатории органической оптоэлектроники НГУ Евгений Мостович.
    1524