Международная команда ученых, работающая на установках Европейской организации по ядерным исследованиям (CERN), часто становится объектом внимания СМИ. Это не удивительно, ведь CERN является крупнейшей в мире лабораторией физики высоких энергий. Одна из последних новостей связана с обнаружением в эксперименте LHCb (Large Hadron Collider beauty experiment) еще одной элементарной частицы, входящей в Стандартную модель. В нем участвовали и новосибирские физики – сотрудники Института ядерной физики им. Г. И. Будкера СО РАН (давнего партнера CERN) и Новосибирского государственного университета (НГУ).

Мы попросили старшего научного сотрудника ИЯФ СО РАН, заведующего кафедрой физико-технической информатики ФФ НГУ, сотрудника коллаборации LHCb, к.ф.-м.н. Павла Кроковного рассказать, как далеко наука продвинулась в изучении Стандартной модели, для чего это нужно, и какая польза нашей стране от такого международного сотрудничества.

– Павел Петрович, начнем с того, почему вообще такое значение придается Стандартной модели и ее изучению?

– Стандартная модель описывает физику частиц, то есть – самый базовый уровень нашего мироздания. Это часть фундамента физики, тех законов, из которых следуют все остальные научные построения (в том числе, приводящие ко вполне прикладным результатам). Был Большой взрыв, энергия разделилась на частицы и античастицы. Но если бы их было одинаковое количество, все просто аннигилировало бы обратно и ничего не осталось.  Вместо этого, мы наблюдаем окружающий нас мир, состоящий из частиц, а вот мира из античастиц не наблюдается. И Стандартная модель, в частности, объясняет эту ситуацию.

– Насколько она завершена?

– Есть ряд явлений, которые при сегодняшнем уровне знаний в Стандартной модели не объясняются. Это, прежде всего вопросы, связанные с темной материей и темной энергией. Если мы возьмем совокупную массу известных нам элементарных частиц, то она окажется намного меньше той массы, которой должна обладать Вселенная, исходя из известных по астрономическим наблюдениям параметров. Считается, что эта разница как раз и приходится на долю темной материи и энергии, но элементы, из которых они состоят, еще предстоит найти.

– А возможен вариант, что новые данные заставят кардинально пересмотреть Стандартную модель, описать вместо нее какую-то другую концепцию мироустройства на уровне частиц?

– Теоретически в науке возможно все, но на сегодняшний день предпосылок для таких прогнозов нет. Большинство ученых сходятся на том, что, скорее, можно ожидать дальнейшей доработки существующей модели, внесения в нее каких-то корректив или дополнений. Для аналогии возьмем ситуацию с механикой – она, как известно, делится на классическую и релятивистскую. Первая хорошо «работает» на низких скоростях, но перестает – на высоких, поэтому и была, собственно, сформулирована вторая, релятивистская. Но если мы возьмем законы релятивистской механики, посмотрим, что в их рамках получается на низких скоростях, то увидим их практически полное сходство с классическими. Так и со Стандартной моделью – пока что мы работаем в ее рамках и нет никаких экспериментальных данных, которые бы в нее совсем никак не вписывались.

– Вы сказали о возможной доработке этой модели, как это могло бы выглядеть?

– Есть два пути проверки Стандартной модели. Первый – это путь высоких энергий, при которых мы ищем частицы или явления, не описанные в рамках Стандартной модели. Второй путь – путь точных измерений, когда мы берем некий параметр, который можем точно рассчитать (это на самом деле нетривиальная задача, потому что какие-то параметры точно посчитать невозможно), а затем – точно измерить в ходе эксперимента. И сопоставляем результаты. Например, в рамках этого подхода сейчас проводится проверка лептонной универсальности. Нам известны три поколения лептонов – электрон, мюон и тау-лептон. В рамках Стандартной модели все процессы с участием лептонов должны протекать идентично, отличие может быть только из-за разных масс лептонов. Сейчас лептонную универсальность проверяют на нескольких экспериментальных установках в нескольких странах. И практически во всех измерениях наблюдается некоторая разница между предсказаниями модели и экспериментальными данными. Но это отличие, как говорится, «пороговое», может, это просто статистическая флуктуация, а может – нет. Пока все данные не обработаны, выводы делать рано, но это пример возможного направления коррективы Стандартной модели. Возможного, повторю, если после обработки данных подтвердится именно их несоответствие предсказанным результатам. Потому что нарушение лептонной универсальности – это уже серьезный вызов для Стандартной модели. Но также может оказаться, что несоответствия нет, как это уже бывало несколько раз.

– Раз мы вернулись к экспериментальным установкам, Россия не является членом CERN и тем не менее мы участвуем в финансировании строительства их комплексов, включая тот же Большой адронный коллайдер (LHC). Можно ли говорить о равноправном сотрудничестве?

– Действительно, мы не входим в число стран-участниц CERN, но имеем статус специального партнера. Это связано с уставом организации и на деле никак не ущемляет наши интересы, точно таким же статусом обладают США и Япония. Наш Институт сегодня участвует во всех трех из четырех основных экспериментах, проходящих на LHC. Кроме того, согласно этому статусу, CERN тоже может принимать участие в работе наших проектов, включая ЦКП «СКИФ» (Центр коллективного пользования «Сибирский кольцевой источник фотонов»), строительство которого планируется в Новосибирской области, и проект электрон-позитронного коллайдера Супер С-тау фабрика.

– Если говорить не о возможном сотрудничестве, а о том, что уже проделано, какую пользу извлекла российская наука и, в частности – ИЯФ СО РАН, из партнерства с CERN?

– Начнем с того, что самые большие и значимые эксперименты в нашей области не случайно являются международными – на сегодня ни одна страна не способна провести их в одиночку – настолько они дорогие и технически сложные. Поэтому вопрос стоит так – или ты участвуешь в большой компании, или не участвуешь совсем. Для сохранения передовых позиций в науке важно именно принимать участие в такой работе, а не читать доклады и статьи тех, кто это сделал. Эти совместные проекты приносят нам бесценный опыт, мы осваиваем методы и подходы ведущих мировых ученых, которые затем применяем уже в работе по своим проектам здесь. Кроме того, выполняя заказы для международных научных коллабораций на периоде строительства установок, ИЯФ не просто получил средства на собственное развитие, но и отработал изготовление уникального научного оборудования.

Этот опыт будет востребован при реализации проекта уникальной научной установки класса мегасайенс ЦКП «СКИФ» в Новосибирске, планируемого в рамках программы развития Новосибирского научного центра, известной как Академгородок 2.0. Осуществление этого проекта станет возможным благодаря накопленному нами опыту работы в больших международных проектах.

Сергей Исаев

Источники

"Пока нет данных, не вписывающихся в Стандартную модель"
Академгородок (academcity.org), 18/03/2019

Похожие новости

  • 23/05/2019

    Археологи выделили на юге Западной Сибири новую культуру эпохи неолита – барабинскую

    Ученые Института археологии и этнографии СО РАН (ИАЭТ СО РАН) выделили на юге Западно-Сибирской равнины новую неолитическую культуру – барабинскую. Основой полученных данных стали исследования уникального комплекса, состоящего из двух жилых сооружений, артефактов из них, а также нескольких своеобразных ям для заготовки рыбы.
    388
  • 27/03/2019

    Эксперимент в ЦЕРН подтвердил существование редких многокварковых состояний

    Коллаборация LHCb (CERN, Европейская организация по ядерным исследованиям), в которую входят Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) и Новосибирский государственный университет (НГУ), 26 марта на конференции Moriond QCD объявила об обнаружении в распадах Λb-бариона трех пентакварков – «экзотических» структур, состоящих из пяти кварков.
    236
  • 16/04/2019

    Как синхротронное излучение помогает науке

    ​Половина Нобелевских премий в молекулярной биологии за последние 20 лет отдана синхротронному излучению (СИ). Ученый Анатолий Снигирев рассказал, как получают рентгеновские лучи необходимых параметров и в чем преимущество проектов источников СИ четвертого поколения, реализуемых в России.
    257
  • 26/08/2016

    Ученые СО РАН представили результаты работы на Международной конференции в области высоких энергий

    ​Специалисты Новосибирского государственного университета и Института ядерной физики им. Г. И. Будкера СО РАН приняли участие в 38-й Международной конференции в области физики высоких энергий в Чикаго (ICHEP-2016).
    2694
  • 25/05/2017

    Большой адронный коллайдер возобновил сбор данных

    На Большом адронном коллайдере (БАК) закончились технические работы и модернизация — он возобновил сбор данных, в трех экспериментах на коллайдере участвуют исследователи НГУ и ИЯФ СО РАН. Планируемая остановка на технические работы на БАК случается в начале каждого года.
    1642
  • 07/03/2016

    В ИЯФ СО РАН разработали ключевые компоненты нового коллайдера

    ​ ​В Институте ядерной физики им. Г.И. Будкера СО РАН созданы вакуумные камеры, корректирующие магниты, электроника регистрации и программное обеспечение для установки SuperKEKB, которая монтируется в японской Лаборатории физики высоких энергий (КЕК) в Цукубе.
    2318
  • 20/03/2019

    Время научной дерзости: зачем ученые ищут Новую физику

    В конце февраля этого года мир узнал, что коллаборация LHCb (CERN), в которую входит более десяти российских научных организаций, в том числе Институт теоретической и экспериментальной физики имени А.
    271
  • 03/09/2018

    На пути к бор-нейтронозахватной терапии

    В проект «Академгородок 2.0» вошли сразу две заявки, касающиеся бор-нейтронозахватной терапии — эффективного метода борьбы с неизлечимыми онкологическими заболеваниями. О мерах, которые предпринимаются для того, чтобы проект поскорее воплотился в жизнь, и о том, какие на этом пути есть препятствия, говорили на круглом столе на VI Международном форуме технологического развития и выставке «Технопром».
    1087
  • 14/04/2017

    На коллайдер SuperKEKb в Японии установили детектор Belle II с российским оборудованием

    В ускорительном центре КЕК (Цукуба, Япония) завершена установка детектора Belle II в место встречи пучков коллайдера SuperKEKB, сообщает пресс-служба КЕК. Общий вес детектора превышает 1400 тонн. Одна из его ключевых систем – 40-тонный электромагнитный калориметр на основе кристаллов йодистого цезия – был создан и разработан при определяющем участии Института ядерной физики им.
    1282
  • 28/02/2019

    В ЦЕРН обнаружили новую частицу, которая уточнит кварковую модель

    ​Коллаборация LHCb (CERN, Европейская организация по ядерным исследованиям), в которую входят Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) и Новосибирский государственный университет (НГУ), объявила об открытии нового состояния c-кварка и анти c-кварка – частицы ψ3(1D).
    482