Не так давно, в ФИЦ «Институт цитологии и генетики СО РАН» был представлен цикл презентаций «Как создаются современные лекарства». Поводом для выбора темы стали новые возможности, которые дало объединение «под крышей» одного Федерального исследовательского центра ведущего института СО РАН, занимающегося фундаментальными генетическими исследованиями, и двух НИИ медицинского профиля.

Теперь в рамках одной организации стало возможным осуществление полного цикла создания лекарственного препарата, от компьютерных моделей до клинических испытаний и выпуска пробных партий готового препарата. О чем собственно и рассказали собравшимся (журналистам и студентам вузов Новосибирска) сотрудники ФИЦ ИЦиГ.

Сегодня путь на рынок для любого нового лекарства занимает много лет, а начинается он в научных лабораториях, где часто вместе работают молекулярные генетики и специалисты по биоинформатике.

Об этом этапе рассказала сотрудник лаборатории компьютерной протеомики Института цитологии и генетики Олька Сайк. А точнее – про поиск потенциальных генов-мишеней, перспективных для разработки новых лекарств с помощью анализа генных сетей.

В настоящее время медицине известно более 10 тысяч различных заболеваний и синдромов, от которых может страдать человек. В Госреестре зарегистрировано почти 40 тысяч лекарственных препаратов. И, тем не менее, для многих заболеваний существует только симптоматическое лечение (не устраняющее саму болезнь, а лишь ослабляющее ее воздействие), а уровень смертности населения остается высоким.

Не упрощают жизнь медикам и другие факторы: с годами многие бактерии и вирусы становятся устойчивыми к существующим лекарствам, сильнодействующие препараты имеют неприятные побочные свойства, а одновременный прием разных лекарств (при одновременном лечении разных болезней) может вести к новым осложнениям.

В этой ситуации требуются новые лекарства, более эффективные и в то же время безопасные, а еще лучше – персонализированные, учитывающие генетические особенности пациента. Ключевым этапом при их создании является правильный выбор фармакологической мишени, выбор белка, на который необходимо оказать химическое воздействие для предотвращения развития заболевания.

Сделать этот поиск более быстрым, эффективным и менее затратным позволяют методы биоинформатики, опирающиеся на анализ генных сетей.

– В начале прошлого века генетика исходила из парадигмы, что один ген определяет один фенотипический признак, - напомнила Ольга Сайк. – Но позднее ученые пришли к выводу, что отдельный признак обеспечивается функционированием группы взаимодействующих генов. К примеру, цвет глаз определяется группой из 5-10 генов. Так и возникла концепция генных сетей, каждая из которых определяет тот или иной признак организма. А сам ген при этом может быть включен в разные сети.

Анализ генных сетей, в частности, позволяет понять, каким образом воздействие вируса или мутации самого гена может приводить к развитию определенного заболевания








Анализ генных сетей, в частности, позволяет понять, каким образом воздействие вируса или мутации самого гена может приводить к развитию определенного заболевания. В качестве примера, Ольга Сайк привела модель воздействия вируса гепатита С, ведущего к развитию цирроза печени. Известно, что белок вируса р56 может специфически активировать белок TLR4 в клетках печени человека. Также известно, что у людей, болеющих циррозом, уровень данного белка в печени значительно повышен. Далее, выстроив модель генной сети, в которой задействован пораженный вирусом ген, можно выделить гены-мишени, воздействие на которые позволит нейтрализовать негативный фактор.

Один из подходов предполагает выделение внутри сети отдельных кластеров, ответственных за те или иные процессы, затем выделяют те из них, что наиболее вовлечены в процесс развития заболевания (апоптоз клеток или наоборот – иммунный ответ и т.п.), после чего работают, в первую очередь, с ними. Затем, внутри кластера ищут хабы (центральные вершины) – гены, через которые проходит больше всего связей внутри генной сети. Обычно, это белки – регуляторные молекулы. Именно они и являются приоритетными генами-мишенями.

Дальнейший анализ позволяет также оценить риски развития у пациента побочного эффекта в результате воздействия на мишень лекарством. Ведь ген, выбранный мишенью, может участвовать во многих других процессах, в том числе, не связанных напрямую с заболеванием. И надо оценить, как это воздействие повлияет на другие процессы, в которые вовлечен ген. Исходя из этого, приоритет получают гены, которые имею меньше связей с иными биологическими процессами.

Звучит довольно просто, но на самом деле решение этой задачи занимает массу времени и сил. Ведь многие сети включают сотни генов и еще больше – регуляторных взаимодействий между ними. Для проведения всего этого объемного анализа разработан специальный математически аппарат. Изучая воздействие того же вируса гепатита С, сотрудники ИЦиГ выявили 900 белков человека, вовлеченных в этот процесс. А затем, проанализировав их работу в генных сетях, определили несколько потенциальных кандидатов в гены-мишени, причем, не только для лечения собственно гепатита С. Так, белок человека енолаза 1 (ENO1) может быть также мишенью для лекарств против воспаления легких, неходжкинской лимфомы и глиомы. И все же – это только первый (и не самый трудоемкий) этап на пути к новому лекарственному препарату.

Сначала строится модель белка-мишени, а затем, подбирать химическое соединение, которое блокировало бы его работу









Следующий шаг – компьютерное моделирование потенциальных ингибиторов: сначала строится модель белка-мишени, а затем, подбирать химическое соединение, которое блокировало бы его работу. Более подробно об этой работе рассказал еще один сотрудник лаборатории компьютерной протеомики Никита Иванисенко.

– Если вы проанализируете, что вам выписывает терапевт, то вы увидите, что большинство лекарств – это низкомолекулярные соединения, - сказал он. – Фактически, задача молекулы лекарства – ингибировать конкретный белок (затормаживать или останавливать его работу), который ответственен за возникновение и развитие заболевания.

К примеру, установлено, что если удастся проингибировать (нарушить работу) белка протеаза ВИЧ-1, то сам вирус иммунодефицита человека также прекращает размножаться и поражать организм. Собственно, сегодня множество исследований по созданию лекарства против ВИЧ работают именно в этом направлении.

В описании такого рода исследований, ученые часто используют аналогию «ключ-замок». В ней белку отводится роль «ящика», который надо «открыть». «Замочной скважиной» в данном случае является некий сайт (место, через которое к нему может прикрепиться молекула лекарственного препарата).

И задачей ученых на данном этапе является смоделировать химическое соединение, которое смогло бы связаться с этим сайтом, создать «ключ» для этого уникального природного «замка».

Существует много способов подбора таких соединений, которые в фармацевтике классифицируют по двум подтипам. Это методы полного перебора (когда проверяются все возможные комбинации, а речь может идти о миллионах вариантов) и методы рационального подхода (когда сначала изучается устройство «замка», и на основе этого подбираются подобия «ключей»). Оба подхода сегодня широко используются в фармацевтике. Первый подход более понятен и методы поиска в его рамках хорошо отработаны, зато второй часто помогает значительно сэкономить ресурсы и время.

Каким же образом ученые изучают «замки» белков. Большой популярностью пользуется, в частности, метод рентгеноструктурного анализа. Для начала надо вырастить кристалл, который будет состоять из белка-мишени (что само по себе очень непростая задача). Затем проводится анализ дифракции рентгеновских лучей. И на его основе строится компьютерная модель белка-мишени, которая и предоставляет информацию об устройстве его «замка». Правда в этой модели нет информации о том, какие части молекулы белка подвижны, а какие – нет. На этом этапе и начинается рациональный поиск «отмычки», с использованием компьютерных вычислений, таких как машинное обучение.

Как видно из описания, несмотря на то, что такой подход заметно сокращает число кандидатов на роль «отмычки», сам по себе он подразумевает решение сложных задач и привлечение для этого весьма компетентных специалистов. Поэтому, несмотря на очевидные «слабые места», методы полного перебора по-прежнему пользуются высокой популярностью у фармацевтических компаний.

Впрочем, формирование некоего списка кандидатов на роль нового лекарства – это лишь первый шаг. Далее в работу включаются исследователи другого профиля, о которых мы подробнее расскажем в следующих частях нашего мини-цикла.

Наталья Тимакова

Источники

В поисках гена-мишени
Академгородок (academcity.org), 14/03/2018

Похожие новости

  • 14/11/2016

    Академику Владимиру Солошенко исполнилось 70 лет

    ​Солошенко Владимир Андреевич Солошенко родился 12 ноября 1946 году в г. Черепаново Новосибирской области. Окончил Новосибирский сельскохозяйственный институт в 1970 году по специальности зоотехния. В 1970-1972 г.
    1355
  • 10/01/2017

    Академику Николаю Колчанову исполнилось 70 лет

    ​Николай Александрович Колчанов родился 9 января 1947 года в с. Кондрашино Омской области. В 1971 году окончил Новосибирский государственный университет. С 1974 года работает в Институте цитологии и генетики СО РАН, а с 2008 года - директор этого института.
    1543
  • 06/06/2018

    Анна Стекленева: экологическое воспитание – труд относительно немногочисленных энтузиастов

    В новосибирском Академгородке работает масса уникальных научных групп и лабораторий. Причем не все из них заняты фундаментальными исследованиями, есть и те, что решают задачи вполне себе прикладного характера, но от того не теряющие своей актуальности.
    295
  • 03/11/2017

    ​​В ИЦиГ СО РАН прошли переговоры о сотрудничестве с Академией сельскохозяйственных наук Китая

    1 ноября ФИЦ "Институт цитологии и генетики СО РАН" посетила делегация представителей китайской науки и бизнеса. Главная цель визита - заключение соглашения о сотрудничестве, в рамках которого должны быть созданы два совместных селекционно-семеноводческих центра, один в Новосибирске (на базе ФИЦ ИЦиГ СО РАН), второй - в Пекине (Институт овощеводства и цветоводства).
    729
  • 31/03/2017

    Академик Николай Колчанов рассказал о развитии Селекционного центра

    30 марта на территории новосибирского Академпарка прошло очередное заседание членов Совета «Сибирской биотехнологической инициативы» (СБИ). СБИ – это программа, объединяющая объекты инновационной инфраструктуры и органы власти Сибирского федерального округа, в целях развития биотехнологий, медицины и фармацевтики.
    1425
  • 14/11/2017

    Юбилей академика Михаила Ивановича Воеводы

    ​Михаил Иванович Воевода родился 14 ноября 1957 года в Новосибирске. После окончания в 1982 году Новосибирского Государственного Медицинского Университета обучался в клинической ординатуре по специальности «внутренние болезни».
    1246
  • 29/12/2017

    Биолог, психолог и востоковед рассказали о символе 2018 года

    Какая порода самая древняя? Почему собаки могут есть овсянку? Почему в Китае слагали легенды об этих животных и зачем вообще люди заводят собак? Ответы на эти вопросы ищите в материале ниже. Собака — родственник человека.
    892
  • 09/11/2017

    Научная молодежь: разработки, амбиции, планы

    ​В ТАСС (Новосибирск) накануне Всемирного дня науки состоится круглый стол, посвященный открытиям молодых ученых, их участию в крупных научных проектах. Молодые представители СО РАН - Института горного дела, Института химической биологии и фундаментальной медицины, Института цитологии и генетики, а также действующие и новые резиденты Академпарка, расскажут о ряде проектов, над которыми ведется работа в этом году.
    1140
  • 20/06/2018

    Возможные перспективы Академгородка 2.0

    ​Ведущие ученые СО РАН продолжили обсуждение проектов развития научной инфраструктуры Новосибирского научного центра. Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН выступил инициатором проекта «Сибирский центр малотоннажной химии».
    511
  • 19/10/2018

    Картофель: когда Россия избавится от импортозависимости по семенам?

    Картофель - "второй хлеб", без которого сибиряк долго прожить не сможет. Обязательно соскучится. Но почему уже с февраля на прилавках магазинов лежит не свой, а египетский? Сейчас, осенью, собрав урожай, сибиряки часть закладывают на семена для будущего года.
    157