В преддверие Дня Победы ученые представили разработки институтов Сибирского отделения Российской академии науки и промышленных корпораций в сфере оборонного и гражданского назначения. 

Председатель Сибирского отделения РАН, академик Александр Асеев подчеркнул, что «решение сложных проблем оборонно-промышленного комплекса, его диверсификация — то есть производство гражданской продукции, — невозможно без опоры на достижения фундаментальной науки. Сибирское отделение успешно работает в этой области:  восемь институтов СО РАН включены в сводный реестр организаций ОПК России». 
 
В СО РАН ведутся исследования по проблемам гиперзвука, решаются задачи навигации и управления для лазерной техники,  создания новых материалов (высоко-прочных, коррозионно- стойких, новых энергетических материалов для ракетного топлива и входящих в состав боевых частей снарядов) и другие.
 
Вице-президент по инновациям Объединенной авиастроительной корпорации Сергей Коротков заметил: «Сегодня нам необходимо уменьшить время реализации инновации в конечных продуктах нашей корпорации. Самолет — это летающий компьютер, который при длительном проектировании  устаревает. Задачи, стоящие сейчас перед нами, — создание новых авиационных комплексов гражданского и военного назначения в достаточно короткий срок». Он также  привел пример турбулентности ясного неба, в которую первого мая попал самолет авиакомпании «Аэрофлот» и многие пассажиры получили травмы. «Требуется установка новых систем, радаров, которые могли бы видеть «сдвиг ветра» и повышать безопасность полета», — прокомментировал Коротков.
 
Директор Института ядерной физики им. Г. И. Будкера СО РАН академик Павел Логачев подчеркнул, что все применения разработок ИЯФ тесно связаны с фундаментальной наукой:  «Фундаментальные задачи по исследованию свойств материи и элементарных частиц физики ускорителей, детекторов — это главное наше дело, из которого вырастают все приложения, умения и полный цикл от идеи до изделия, который реализован в институте».
 
(слева направо) Павел Заболотный, Александр Латышев, Павел Логачев 
 
Надо отметить, что благодаря работе коллайдеров ИЯФа был создан, например, знаменитый «Сибскан» — сканер нового поколения для бесконтактного досмотра пассажиров и ручной клади, позволяющий в течение пяти секунд сделать снимок человека. Доза рентгеновского облучения при осмотре, мала и сравнима с фоновой, приобретаемой за 4 минуты авиаперелета на высоте 10 тысяч метров. 
 
«На днях мы получили патент на применение в детекторной системе этой установки полупроводникового детектора с прямым счетом гамма-квантов. Это подняло разрешение в несколько раз, уменьшило дозы, увеличило качество картинки. Вторая идея, которая находится сейчас в стадии реализации — динамическое управление интенсивностью рентгеновской трубки. Оно позволит еще вдвое снизить дозу, то есть эквивалентная доза за один досмотр не будет превышать получаемой за две минуты полета на высоте 10 тысяч метров», — отметил Павел Логачев.
 
Новые материалы, не существующие в природе, создают в  Институте физики полупроводников им. А.В. Ржанова СО РАН благодаря умению управлять отдельными электронами, пониманию процессов, происходящих на поверхности отдельного атома — это тоже достижения фундаментальной науки. При помощи метода молекулярно-лучевой эпитаксии — выращивания тонких кристаллических пленок на кристаллической подложке — свойства  материалов можно «заказать» заранее, а после сконструировать  структуры с заданными свойствами.
 
«Например, у нас есть три  производственных линейки, полностью загруженных на то, чтобы создавать материалы для фоточувствительных приёмников. Причем речь идет о тепловизионных каналах, когда не нужна подсветка, а само тело испускает излучение, которое можно регистрировать. В ИФП СО РАН производятся и  конкретные изделия — например, унифицированные модули для тепловизионных каналов с получаемым тепловизионным изображением. Помимо этого мы занимаемся изготовлением полупроводниковых пластин с необходимыми фоточувствительными системами  и передаем их в промышленность», —  рассказал директор ИФП СО РАН академик Александр Латышев.  
 
Установка для молекулярно-лучевой эпитаксии в ИФП СО РАН 
 
В области создания СВЧ-структур, которые применяются в средствах связи, различных локаторах, системах наведения и контроля, ИФП работает на уровне маленького завода, выпуская до 1000 структур в год. Сфера применения подобных материалов — и военная и гражданская:  в частности, для использовании в космическом пространстве или в Арктике. Также запатентованным методом DeleCut  институт создает и до 5000 пластин «кремний-на-изоляторе», необходимых для работы электроники в экстремальных условиях — на космических станциях с жестким излучением, в сфере атомной энергетики.
 
Генеральный директор Новосибирского завода имени Коминтерна Павел Заболотный отметил успешное сотрудничество предприятия с институтами СО РАН в области производства военной и гражданской продукции. «На сегодняшний день мы ведем разработку современных и перспективных радиолокаторов, опытный образец изготовлен,  успешно проведены первые этапы испытаний. Но этого бы не произошло, если бы не была решена одна из проблем, с которой нам помогли справиться коллеги из ИФП СО РАН. Благодаря технологии, которой обладает институт, мы получили результат», — прокомментировал Заболотный.
 
О приборе подземного электровидения, создаваемого Новосибирским заводом имени Коминтерна вместе с Институтом нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН подробно рассказал главный научный сотрудник ИНГГ​ академик Михаил Эпов: «У нас есть обширное геофизическое направление, занимающееся проблемами безопасности — связанными с экологией, безопасностью промышленных сооружений, подземной инфраструктурой. Совместно с заводом им. Коминтерна мы разработали и налаживаем выпуск системы подземного электровидения. Это портативный прибор, позволяющий «видеть» примерно на глубину до 10 метров практически любые инженерные сети, включая системы жизнеобеспечения. Знание состояния этой подземной среды позволит не только предотвращать возможные аварии, но и прогнозировать плановый ремонт. К концу  года мы надеемся получить  первый пилотный образец этого прибора».
 
«Наука в Сибири»
 
Фото Надежды Дмитриевой (1), Юлии Поздняковой (2)

Похожие новости

  • 30/12/2020

    Топ-30 разработок сибирских ученых в 2020 году

    ​На портале «Новости сибирской науки» можно познакомиться с инновациями и последними достижениями сибирских ученых. Сегодня мы предлагаем вашему вниманию Топ-30 сообщений о наиболее значимых и интересных научных разработках 2020 года, размещенных на нашем сайте.
    6162
  • 16/04/2021

    Разработки самого высокого полета

     Каждый восьмой грант, получаемый учеными региона, посвящен аэрокосмическим исследованиям. Новосибирские ученые вносят большой вклад в освоение космоса: тренажер для стыковки космических аппаратов, технология для изготовления солнечных батарей на орбите и на Луне, катализаторы орто-пара-конверсии водорода, аэродинамические исследования перспективного российского многоразового космического корабля «Орел» — вот далеко не полный перечень разработок, рожденных в Сибири.
    792
  • 30/10/2020

    Прикоснуться к живой истории: в ИФП СО РАН рассказали об академике Ржанове

    ​В Институте физики полупроводников им А.В. Ржанова СО РАН прошло торжественное заседание Ученого совета, посвященное столетию со дня рождения основателя Института, академика Анатолия Васильевича Ржанова.
    781
  • 29/03/2021

    Российская наука, американский бизнес, китайская клиника

    Нейтронный источник для бор-нейтронозахватной терапии рака разработали ученые Института ядерной физики им. Г. И. Будкера Сибирского отделения РАН в сотрудничестве с американской компанией TAE Life Sciences.
    802
  • 06/08/2020

    Николай Юркевич: экспедиция — хороший задел для проведения мониторинговых работ в будущем

    ​В июле сибирские ученые получили приглашение от компании «Норильский никель» принять участие в работах на полуострове Таймыр. Задачи, стоящие перед экспедицией — оценка текущего экологического состояния этого района и разработка концепции хозяйствования на арктических территориях.
    991
  • 20/02/2021

    От атомов к поверхностям-трансформерам

    ​​​​​​В лаборатории нанодиагностики и нанолитографии, у истоков которой стоит академик Александр Леонидович Асеев, исследуют атомные процессы на поверхности и в объеме кристаллов, атомное строение наноструктур с помощью высокоразрешающей просвечивающей электронной микроскопии, развивают методы наноструктурирования поверхности с помощью электронной, ионной- и зондовой литографии для изготовления твердотельных наносистем из полупроводниковых, металлических и органических материалов.
    709
  • 21/04/2021

    Президент РАН отметил работы сибирских учёных

    В резюмирующий доклад президента РАН академика Александра Михайловича Сергеева, посвященный приоритетным направлениям деятельности Академии наук по реализации государственной научно-технической политики в РФ и важнейшим научным достижениям, полученным российскими учеными в 2020 году, вошли результаты работ сибирских институтов.
    447
  • 27/01/2021

    О нереализованных проектах

    У нас обычно принято в конце каждого года или в начале нового подводить итоги. Учитывая, что прошедший год стал богатым на неприятные сюрпризы (взять хотя бы пандемию), такое осмысление прошедшего напрашивается сейчас как никогда.
    428
  • 29/12/2018

    Провожая 2018-й: об интересных, ярких и значимых исследованиях сибирских ученых

    ​Специалисты из лаборатории биоинформатики Института вычислительных технологий СО РАН разработали программное обеспечение для создания моделей организма человека и его частей, например сердечно-сосудистой системы.
    2751
  • 11/04/2018

    Круглый стол «Научное приборостроение для нанотехнологий. Современное состояние. Возможности развития»

    ​Уважаемые коллеги, В новосибирском Академгородке 25 апреля 2018 года с 11-00 до 17-00 на базе Института физики полупроводников имени А.В. Ржанова СО РАН (Новосибирск, пр. академика Лаврентьева, 13) при поддержке Нанотехнологического Общества России, компании NT-MDT Spectrum Instruments и Сибирского Отделения РАН состоится в формате круглого стола семинар по теме: «Научное приборостроение для нанотехнологий.
    2376