Ученые ФИЦ «Институт цитологии и генетики СО РАН», продолжая работу, посвященную упорядочиванию ДНК в клеточных ядрах, сравнили два типа клеток — фибробласты и эритроциты — у человека и у курицы и выяснили ряд интересных моментов, требующих дополнительных исследований. Результаты работы опубликованы в журнале Nucleic Acid Research.

Около десяти лет назад на вооружении у биологов появился эффективный метод под названием Hi-C, позволяющий узнать пространственную структуру укладки ДНК внутри ядер клеток. Представим огромный аэропорт со сканирующей аппаратурой — по ленте едут рюкзаки, чемоданы и сумки, а специалист смотрит на экране: нет ли запрещенных к провозу вещей. Заодно, если будет интерес, можно увидеть, насколько аккуратно люди складывают одежду, обувь и прочие нужные предметы и не помещают ли способное пролиться красное вино рядом с дорогим кашемировым пальто. Природа — «человек» очень аккуратный и предусмотрела для ДНК логичный, неслучайный и очень похожий у разных организмов способ организации столь важной структуры. 
 

Метод Hi-C совмещает в себе инструменты генной инженерии — разрезание и сшивание ДНК, фиксацию ее в пространстве за счет химических реакций и взаимодействия с окружающими белками — плюс массовое параллельное секвенирование.

«То, что при этом существует много петель (а как иначе длинную молекулу упаковать в маленькое ядро), сюрпризом для исследователей не оказалось, — комментирует ведущий научный сотрудник ФИЦ ИЦиГ СО РАН кандидат биологических наук Вениамин Семёнович Фишман. — Интересно другое — эти петли, как выяснилось, располагаются в неслучайных местах и являются не статичными, а динамичными». 

Есть комплекс, который представляет собой нечто вроде карабина у альпинистов — он «садится» на ДНК и протягивает ее внутрь кольца, образуя при этом петлю. На самой же ДНК существуют участки, где располагаются белки, блокирующие этот процесс. «Комплекс доезжает до них и останавливается, в этом месте образуется более или менее стабильная петля, — объясняет Вениамин Фишман. — Однако он не связывается с ДНК намертво: по какой-либо причине, пока непонятно, какой именно, комплекс “отваливается”, и наша петля распадается. Затем кольцо случайно “садится” в другое место и снова начинает формировать петлевую структуру. Этот процесс в клетке идет постоянно, но поскольку блокирующие белки сидят всё время на одном и том же месте, то и петли (а их много и они разные) в среднем располагаются в одинаковых местах».
 
Механизм протягивания петли является чрезвычайно важным. Как известно, клетки в организме очень сильно отличаются друг от друга как морфологически, так и функционально. Это вызвано тем, что в них работают разные гены (хотя геном один). Чтобы обеспечить эту дифференциацию в числе других факторов работают и петли ДНК. «Дело в том, что в них на какое-то время неподалеку друг от друга оказываются промоторы (это участки, где начинается работа генов, куда садится белок, считывающий ген) и энхансеры (регионы в ДНК, где сидят контролирующие белки, способные включать ген). Пространственное их сближение и задает включение гена, — комментирует Вениамин Фишман. — Соответственно петли важны для того, чтобы обеспечить связывание правильных “пар”».
 
Практическая значимость исследования организации ДНК в клеточных ядрах заключается в том, что есть целый ряд заболеваний, в первую очередь наследственные и онкологические патологии, которые связаны с мутациями, нарушающими структуру петель. При этом и сами гены, и энхансеры не имеют никаких изменений — но, к примеру, удалены места посадки блокирующих белков, меняется координация промоутеров и энхансеров. В результате последние, например, включают участок, отвечающий за деление клетки — и уже было показано, что в ряде случаев это может быть причиной появления рака. Продолжая аналогию — чемодан тряхнуло (или его взяли вверх ногами), и бордо все-таки пролилось на белый кашемир. 
 
«Полное понимание действия механизма поможет подбирать соответствующую терапию в зависимости от причины, по которой произошло перерождение клетки, и с учетом того, какие гены работают в опухоли», — говорит Вениамин Фишман.

Исследователи из ФИЦ ИЦиГ СО РАН решили углубиться в фундаментальные аспекты этого вопроса. Три года назад ученые опубликовали работу, где рассматривались несколько типов клеток, и было показано: во всех них петли очень похожи, и многие совпадают по своему расположению. Казалось бы, должно быть наоборот — если это задает клеткам специфику. «Похоже, петли создают некую базовую инфраструктуру, чтобы группы энхансеров и генов могли встретиться, — поясняет Вениамин Фишман, — а какие из них окажутся близки, определяется уже другими механизмами». 
 
Теперь же биологи хотели узнать, насколько эволюционно консервативны петли. То есть если взять участки ДНК, которые сохранили длинные последовательности в ходе эволюции, у различных организмов, то было интересно — в одинаковых или в разных местах окажутся нужные структуры. В одной из статей за авторством других исследователей (Великобритания) уже было показано сравнение нескольких видов млекопитающих: кролика, собаки, макаки, мыши и человека. Выяснилось — да, петли располагались примерно в тех же местах. Кроме того, также в мире уже были проведены работы на дрозофиле, но, по словам Вениамина Фишмана, в отношении петель трудно проводить параллель между людьми и мухами, слишком сильно разошлись геномы. 
 
«Мы задумали посмотреть что-то посередине и найти где-то в промежутке момент, с которого пошло расхождение, — рассказывает Вениамин. — Как модельный объект взяли птиц, в частности курицу. Во-первых, потому что это сельскохозяйственно значимый модельный объект. Во-вторых, наша работа выполнялась совместно с коллегами из Санкт-Петербургского государственного университета: группой кандидата биологических наук Аллы Валерьевны Красиковой. Они занимались куриным геномом на протяжении многих лет. В-третьих, мы хотели взять контрастные типы клеток».
 
Дело в том, что у курицы есть еще один очень необычный тип клеток — ядерные эритроциты. У людей ядро выбрасывается из них в ходе созревания. Доподлинно причины неизвестны, но главенствующая идея заключается в том, что размеры капиллярной системы в ходе эволюции постепенно уменьшались, и в какой-то момент капилляры стали настолько тонкими, что эритроциты с ядром туда просто не пройдут.
 
«У куриц ядра в эритроцитах есть, и ДНК там очень плотно упакована. Так что мы решили взять у куриц фибробласты (клетки соединительной ткани, они считаются “типичными”), чтобы сделать эволюционное сравнение, и эритроциты — посмотреть на необычный клеточный тип», — говорит Вениамин Фишман.
 
В ходе работы ученые ФИЦ ИЦиГ СО РАН обнаружили две интересные вещи. Первая — петли консервативны не только у млекопитающих. Несмотря на эволюционную разницу в 120 миллионов лет, у курицы тоже сохраняется не только линейная, но и пространственная структура ДНК. «Видимо, это очень важный для функции организмов механизм, который мы еще плохо знаем», — отмечает Вениамин Фишман. 
 
Вторая — в эритроцитах у курицы механизм протягивания петли не работает. «Это абсолютно уникальный пример, — говорит ученый. — Вот представим: все типы клеток, которые были исследованы, у всех организмов, достаточно далеких друг от друга, демонстрируют более-менее одинаковые петли. И вдруг — тип клеток, где таких структур нет вообще! Конечно, какие-то петли всё равно имеются, но нет нужных нам, специфических, с конкретным механизмом образования». 
 
Результаты работы опубликованы в NAR. Одновременно с этой статьей вышла еще одна, где коллектив авторов из Великобритании и США пишет: в ходе митоза, когда клетка делится и ей нужно дополнительно упаковать ДНК и начать распределять ее между дочерними клетками, — вот в этот очень короткий момент, исчисляющийся минутами, — ее специфические петли пропадают. «Мы предполагаем, что куриные эритроциты — это уникальные клетки, которые постоянно живут как будто в состоянии процесса деления. В этот момент ДНК максимально компактна, и это помогает эритроцитам сильно уменьшить ядро», — объясняет Вениамин Фишман.
 
В дальнейшем ученые ФИЦ ИЦиГ СО РАН, используя эритроциты курицы, хотят узнать, что происходит в ходе клеточного деления, как ДНК становится столь плотно упакованной — в настоящее время эти процессы очень плохо изучены. В частности, потому, что в жизни клетки процесс самого размножения занимает считанные минуты, и у исследователей не было хорошей модели — большой популяции клеток, которые бы долго находились в нужном состоянии. «Теперь у нас эта возможность есть, — говорит Вениамин Фишман, — и мы пытаемся прояснить интересующие нас вопросы. Еще одно продолжение этой работы — и у нас есть на это грант РФФИ  — изучение эритроцитов мыши и человека на очень коротких стадиях прямо перед выбрасыванием ядра. Мы хотим попробовать посмотреть, насколько консервативен в эволюции этот феномен: так же или нет упаковывается ДНК перед избавлением от ядра у млекопитающих и человека». 
 
Екатерина Пустолякова

Источники

Петляющая ДНК
Наука в Сибири (sbras.info), 29/11/2018
Петляющая ДНК
livejournal.com, 01/12/2018
Петляющая ДНК
Академгородок (academcity.org), 30/11/2018

Похожие новости

  • 27/02/2017

    Новосибирские ученые изобрели искусственную замену человеческим сосудам

    ​Ученые Института цитологии и генетики СО РАН с участием студентов Новосибирского государственного университета совместно с Сибирским Федеральным биомедицинским исследовательским центром имени академика Е.
    1525
  • 27/12/2017

    Исследователи реализуют проект, позволяющий исправлять мутации ДНК митохондрий

    ​В последнее время все чаще можно услышать о тяжелых наследственных заболеваниях митохондриальной этиологии. Эти недуги вызываются дефектами митохондрий, которые являются своеобразными "энергетическими станциями" клеток организма.
    992
  • 16/11/2016

    Ученые ИЦиГ СО РАН научились замораживать эмбрионы кошачьих

    ​Учёные ФИЦ Институт цитологии и генетики СО РАН получили in vitro гибридный эмбрион домашней кошки и дальневосточного лесного кота, а также научились успешно замораживать эмбрионы кошачьих. В перспективе эти работы должны способствовать сохранению исчезающих диких видов.
    1425
  • 10/01/2017

    Академику Николаю Колчанову исполнилось 70 лет

    ​Николай Александрович Колчанов родился 9 января 1947 года в с. Кондрашино Омской области. В 1971 году окончил Новосибирский государственный университет. С 1974 года работает в Институте цитологии и генетики СО РАН, а с 2008 года - директор этого института.
    1547
  • 05/12/2016

    Сибирские генетики и управление фотосинтезом

    ​Ученые Новосибирского государственного университета и Института цитологии и генетики СО РАН отвечают на вопрос о том, как на генетическом уровне регулируется синтез и распределение хлорофилла в разных органах растений, исследуя геномы обычного ячменя и ячменя частичного альбиноса, у которого нарушена выработка хлорофилла.
    1836
  • 25/08/2016

    Новосибирские генетики создали маркер для обнаружения раковых клеток

    ​В Новосибирске научились определять среди клеток рака "ключевых убийц", виновных в возникновении опухолей. Однако без господдержки маркер не сможет послужить людям.Ученые всего мира ищут способ победить рак, пытаясь создать препарат, с помощью которого можно отслеживать и помечать опасные клетки.
    1681
  • 27/07/2017

    Учёные ИЛФ СО РАН разрабатывают методы диагностики диабета с помощью терагерцового излучения

    Исследователи из Института лазерной физики СО РАН развивают метод импульсной терагерцовой спектроскопии для диагностики сахарного диабета по характеристикам воды в плазме крови. Также учёные работают над созданием технологии неинвазивного определения этого заболевания.
    896
  • 10/11/2016

    О перспективных направлениях исследований в области биоэнергетики

    ​Academcity продолжает анонсировать инновационные решения, которые будут представлены на форуме "Инновационная энергетика". Сегодня предлагается ознакомиться с перспективным направлением исследований в области биоэнергетики.
    1259
  • 19/11/2018

    Биолог из Новосибирска разработал мобильное приложение для сельского хозяйства

    Труд агрономов и селекционеров иногда содержит очень утомительные операции. Например, периодически им требуется подсчитывать количество зерен в колосьях пшеницы. Не делать этого вручную позволяет мобильное приложение SeedCounter, которое вместе с коллегами создал биолог Михаил Генаев из Новосибирска.
    101
  • 03/02/2016

    Для чего ученые красят пшеницу?

    ​​​​Ученые Федерального исследовательского центра "Институт цитологии и генетики СО РАН" (ИЦиГ СО РАН) ищут новые пути повышения устойчивости ведущих злаковых культур к неблагоприятным условиям, а также работают над повышением питательных свойств зерна пшеницы.
    3133