Ауксины известны как ключевые гормоны развития растений достаточно давно. Их открытие связывают с исследованиями Чарльза Дарвина (работа "О способности растений к движению").

Дарвин установил: если осветить проросток злака с одной стороны, он изгибается к свету, причем, свет воспринимает верхняя часть растения, тогда как сам изгиб происходит в нижней части проростка. В итоге, Дарвин пришел к выводу, что гипотетический регулятор роста растений, который он назвал ауксином, синтезируется в верхушке побега и перемещается в надземной части растения сверху вниз.

Последующие исследования показали, что роль ауксинов в жизнедеятельности растения более значительна и не ограничивается участием в фототропизме - направленном росте растений в сторону источника света.

В настоящее время ауксин широко используется для контроля роста и развития растений, в том числе и в составе известных коммерческих фитогормональных препаратов.

Как и другие гормоны, ауксин регулирует процессы, происходящие в растении на уровне экспрессии генов - процесса, когда наследственная информация из ДНК преобразуется в функциональный продукт (РНК или белок). Для считывания наследственной информации с ДНК гормоны активируют белки (их называют транскрипционными факторами), имеющие на специальном отрезке ДНК генов, экспрессию которых они регулируют (промоторе), участки ДНК для посадки (сайты связывания). Они характеризуются определенной последовательностью из четырех нуклеотидов. Транскрипционные факторы, связываясь с со своими сайтами, активируют или подавляют экспрессию соответствующих генов.

В настоящее время в мире было проведено более 30 экспериментов, в которых после обработки ауксином измерялась экспрессия всех генов в геноме и были определены гены, реагирующие на ауксин.

Произвести системный мета-анализ всего массива этих данных, то есть соотнести изменения активности генов с наличием определенных последовательностей нуклеотидов в их промоторах, позволяют методы биоинформатики, которые давно и успешно развиваются в Институте цитологии и генетики СО РАН (федеральном исследовательском центре).

Поэтому неудивительно, что впервые исследование всех доступных полногеномных данных по влиянию ауксина на активность генов было проведено Институтом цитологии и генетики СО РАН. Соавтором работы выступил профессор Дольф Вейерс из Вагенингенского университета (Голландия), одного из ведущих европейских научно-исследовательских центров в области биологии. Результаты оказались впечатляющими.

"До этого было известно около 10 сайтов связывания транскрипционных факторов, задействованных в изменениях активности генов в ответ на ауксин. Мы открыли дополнительно еще 139 последовательностей в промоторах, также участвующих в этом процессе", - рассказала заведующая сектором системной биологии морфогенеза растений Института цитологии и генетики, кандидат биологических наук Виктория Миронова.

Для некоторых из них с помощью специальных компьютерных программ и баз данных были определены связывающиеся с ними транскрипционные факторы с такими функциями, как ответы на стрессы, регуляция роста. В результате, ученые стали намного ближе к пониманию того, каким образом низкомолекулярному соединению (каковым является ауксин) удается регулировать почти все процессы, происходящие в растении - рост, деление, дифференцировку леток и многое другое. Полученные результаты открывают широкие возможности для экспериментальных исследований.

Не зря статья по теоретической генетике была опубликована в престижном издании по экспериментальной ботанике Journal of Experimental Botany.

Экспериментальное изучение этих последовательностей станет и следующим шагом для учкеых Института цитологии и генетики СО РАН. Для этих исследований были отобраны те из них, которые дали наиболее заметный отклик на ауксин, и в то же время характер этого взаимодействия до сих пор является неизвестным. Эта работа также проводится в сотрудничестве с коллегами из Вагенингенского университета, для этой цели была даже специально организована совместная аспирантура.

"Чем больше мы понимаем про то, как ауксин работает на уровне взаимодействия с ДНК, тем больше мы можем манипулировать процессами, происходящими на клеточном уровне и выше. А это понимание, в свою очередь, может открыть возможности для управления, полного или частичного, данными процессами, что является уже сферой не только фундаментальной, но и прикладной науки. Станет возможным изменять эти процессы в нужную нам сторону. Например, в интересах селекции, для придания новым сортам нужных качеств", - подчеркивает Виктория Миронова.

Похожие новости

  • 27/07/2017

    Учёные ИЛФ СО РАН разрабатывают методы диагностики диабета с помощью терагерцового излучения

    Исследователи из Института лазерной физики СО РАН развивают метод импульсной терагерцовой спектроскопии для диагностики сахарного диабета по характеристикам воды в плазме крови. Также учёные работают над созданием технологии неинвазивного определения этого заболевания.
    298
  • 25/08/2016

    Новосибирские генетики создали маркер для обнаружения раковых клеток

    ​В Новосибирске научились определять среди клеток рака "ключевых убийц", виновных в возникновении опухолей. Однако без господдержки маркер не сможет послужить людям.Ученые всего мира ищут способ победить рак, пытаясь создать препарат, с помощью которого можно отслеживать и помечать опасные клетки.
    920
  • 16/11/2016

    Ученые ИЦиГ СО РАН научились замораживать эмбрионы кошачьих

    ​Учёные ФИЦ Институт цитологии и генетики СО РАН получили in vitro гибридный эмбрион домашней кошки и дальневосточного лесного кота, а также научились успешно замораживать эмбрионы кошачьих. В перспективе эти работы должны способствовать сохранению исчезающих диких видов.
    781
  • 03/02/2016

    Для чего ученые красят пшеницу?

    ​​​​Ученые Федерального исследовательского центра "Институт цитологии и генетики СО РАН" (ИЦиГ СО РАН) ищут новые пути повышения устойчивости ведущих злаковых культур к неблагоприятным условиям, а также работают над повышением питательных свойств зерна пшеницы.
    1882
  • 10/11/2016

    О перспективных направлениях исследований в области биоэнергетики

    ​Academcity продолжает анонсировать инновационные решения, которые будут представлены на форуме "Инновационная энергетика". Сегодня предлагается ознакомиться с перспективным направлением исследований в области биоэнергетики.
    730
  • 13/01/2016

    Татьяна Толстикова: "В СО РАН есть все предпосылки, чтобы решить проблему импортозамещения лекарств"

    ​Доктор биологических наук, профессор Татьяна Генриховна Толстикова возглавляет лабораторию Новосибирского института органической химии им. Н.Н. Ворожцова (НИОХ) СО РАН - уникальную для России структуру.
    1518
  • 27/02/2017

    Новосибирские ученые изобрели искусственную замену человеческим сосудам

    ​Ученые Института цитологии и генетики СО РАН с участием студентов Новосибирского государственного университета совместно с Сибирским Федеральным биомедицинским исследовательским центром имени академика Е.
    682
  • 21/11/2016

    Технологии создания и применение ГМО

    В последние годы все чаще говорят о том, что мир стоит на пороге кардинальных изменений системы образования. И одна из первых «ласточек» этого процесса – MООС (массовые открытые онлайн-курсы) от университетов и колледжей.
    746
  • 05/12/2016

    Сибирские генетики и управление фотосинтезом

    ​Ученые Новосибирского государственного университета и Института цитологии и генетики СО РАН отвечают на вопрос о том, как на генетическом уровне регулируется синтез и распределение хлорофилла в разных органах растений, исследуя геномы обычного ячменя и ячменя частичного альбиноса, у которого нарушена выработка хлорофилла.
    1025
  • 13/04/2016

    В ИЦИГ СО РАН создают базу данных для обработки научной информации

    ​В Федеральном исследовательском центре «Институт цитологии и генетики СО РАН» разрабатывают универсальную систему для поддержки селекционно-генетических экспериментов, пока что тестируя ее на проектах, связанных с изучением пшеницы.
    964