Российские ученые при участии коллег из Польши разработали метод оптического наблюдения за процессом изменений кристаллической структуры металлических сплавов под воздействием сильных магнитных полей, сообщает издание IEEE Transaction on Magnetics.

Многообещающий эксперимент был проведен молодыми учеными из Института Радиотехники и Электроники им. В.А.Котельникова РАН совместно с сотрудниками НИТУ МИСиС и коллегами из Польской Академии наук при финансовой поддержке Российского Научного Фонда.

Ученые добились возможности наблюдать в оптический микроскоп и сняли на видео зарождение новой кристаллической фазы металлического сплава никелида-манганита-олова под воздействием сильного магнитного поля с индукцией до 14 Тл. Было установлено, что после выключения магнитного поля кристаллическая решетка металлического сплава возвращается к исходной структуре.

Необычность этого эффекта состоит еще и в том, что кристаллическая фаза, образуемая под воздействием магнитного поля, имеет более низкую температуру, чем исходная. Магнитное поле вызывает процесс поглощения кристаллом тепловой энергии из окружающей среды, а при выключении поля поглощенное тепло возвращается обратно. Исследователям в ходе эксперимента удалось измерить количественные значения этого преобразованного тепла.

Проще говоря, ученые изучили новый принцип охлаждения твердых тел, и это открывает широкие перспективы реализации почти фантастических технологий доступной и недорогой сверхпроводимости, линий передач электричества без потерь на маршруте, сверхскоростных магнитолевитационных транспортных систем и многих других прорывных разработок, широкое внедрение которых пока еще затруднено дороговизной и низкой эффективностью традиционных охлаждающих криогенных систем.

Похожие новости

  • 02/03/2018

    Первые испытания начались на коллайдере NICA в Дубне

    ​Ученые из США, Тель-Авива, Германии, Франции и России два дня назад начали эксперименты на коллайдере тяжелых ионов NICA в Дубне Московской области. Об этом на пресс-конференции в Новосибирске рассказал директор лаборатории физики высоких энергий Владимир Кекелидзе.
    448
  • 19/10/2018

    Математическая деформация времени помогла понять реальные квантовые системы

    ​Специалист по математической физике Сергей Филиппов из МФТИ вместе с польским коллегой из Университета Коперника нашёл способ классифицировать квантовые каналы при помощи деформации времени. Такая классификация поможет выделить квантовые системы с необычными и интересными свойствами.
    162
  • 14/05/2018

    Ученые знают, как заставить проводник из графена лучше работать

    ​Графен – очень хороший проводник и перспективный материал, обладающий необычными свойствами. Сегодня ученые могут изготавливать уникально чистые образцы графена, которые содержат всего несколько примесей, мешающих его работе.
    300
  • 27/11/2017

    Композиционный материал из графена и дисульфида ванадия повысит емкость и скорость заряда литий-ионных батарей

    ​Ученые из Института физики им. Л.В. Киренского ФИЦ КНЦ СО РАН совместно с коллегами из СФУ и Национального исследовательского технологического университета «МИСиС» предложили использовать соединение графена с монослоем дисульфидом ванадия в качестве анодного материала для литий-ионных батарей.
    1123
  • 10/09/2018

    Физики изучили свойства плазмонов в наноструктурированном графене

    Группа ученых из России и Австрии продемонстрировала, что взаимодействие между плазмонными колебаниями в наноструктурированном графене приводит к сильному сдвигу спектра поглощения света в дальнем инфракрасном диапазоне.
    194
  • 29/08/2016

    Российские ученые первыми испытали детонационный ракетный двигатель

    ​Россия первой успешно испытала детонационный жидкостный ракетный двигатель (ЖРД) нового поколения на экологически чистом топливе, сообщает Фонд перспективных исследований (ФПИ)."Специализированная лаборатория "Детонационные ЖРД", созданная ФПИ в 2014 году на базе НПО "Энергомаш" - ведущего российского предприятия космической отрасли, провела первые в мире успешные испытания полноразмерного демонстратора детонационного жидкостного ракетного двигателя на топливной паре кислород-керосин", - говорится в сообщении фонда.
    1481
  • 16/09/2016

    Российские ученые создали прибор для измерения длины сгустка частиц в ускорите

    ​Ученые Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) и Института общей физики им. А.М. Прохорова РАН (ИОФ РАН) при поддержке гранта РНФ разработали новое поколение высокоскоростных электронно-оптических приборов для диагностики пучков в ускорителях заряженных частиц - диссектор на основе стрик-камеры.
    1610
  • 09/08/2018

    Ученые разработали микрокапсулы с квантовыми точками для диагностики рака

    Ученые Лаборатории нано-биоинженерии Инженерно-физического института биомедицины Национального исследовательского ядерного университета "МИФИ" Галина Нифонтова, Мария Звайзгне, Мария Барышникова и Игорь Набиев в сотрудничестве с исследователями из МФТИ, Института экспериментальной медицины Макса Планка (Германия) и Реймского университета Шампань-Арденн (Франция) разработали полиэлектролитные микрокапсулы со встроенными квантовыми точками, которые могут использоваться для диагностики и лечения онкологических заболеваний.
    243
  • 25/09/2018

    Физики измерили намагниченность диэлектрика за одну триллионную долю секунды

    Коллектив ученых из России, Германии, Швеции и Японии разработал способ изменить намагниченность диэлектрика, воздействуя на него сверхкороткими лазерными импульсами. Ученым удалось добиться времени изменения намагниченности в одну пикосекунду – это в 100 раз меньше, чем предполагалось ранее.
    210
  • 25/10/2016

    Экспериментальная установка покажет, как бороться с перегревом термоядерного реактора

    Ученые Института ядерной физики СО РАН им. Г.И. Будкера (ИЯФ СО РАН), Московского энергетического института (НИУ МЭИ) и ОИВТ РАН создали экспериментальный стенд РК-3, на котором будут проводиться исследования гидродинамики и теплообмена жидкометаллических теплоносителей в условиях ИТЭР (International Thermonuclear Experimental Reactor) и других термоядерных реакторов-токамаков.
    1256