Сотрудники Института физики имени Л.В. Киренского Сибирского отделения Российской академии наук (ИФ СО РАН) вместе с коллегами из Сибирского федерального университета (СФУ) изучили свойства ферромагнетика PbMnBO4. Они обнаружили, что уникальные магнитные и теплофизические характеристики соединения определяются его специфической структурой. Результаты работы, поддержанной грантом Российского фонда фундаментальных исследований, опубликованы в журнале Journal of Magnetism and Magnetic Materials.

Кристалл PbMnBO4 привлек внимание ученых своими ферромагнитными свойствами: вещества-ферромагнетики при определенной температуре (ниже критической температуры Кюри) могут обладать намагниченностью при отсутствии внешнего магнитного поля. Среди оксидов чистые ферромагнетики встречаются редко и природа их магнетизма отличается от таковой у металлических ферромагнетиков. В неметаллических кристаллах устанавливается особый порядок магнитных моментов атомов или ионов, который разрушается при повышении температуры и достижении критической точки. Магнитные моменты этих соединений направлены в одну сторону. Более ранние исследования ученых показали, что в кристалле PbMnBO4 источником ферромагнитной связи является особое свойство трехвалентного иона марганца, искажающего симметрию кислородного окружения.

Изучая характеристики соединения, ученые обнаружили, что отдельные признаки магнитного порядка сохраняются и при повышении температуры выше критической, поэтому магнитные и теплофизические свойства соединения исследовали при температуре Кюри и выше. Измерения теплоемкости позволили изучить сохранение магнитного порядка в отсутствие внешнего поля.

«Мы обнаружили, что даже без внешнего магнитного поля следы магнитного порядка сохраняются вплоть до температур, вдвое превышающих точку Кюри. В присутствии поля этот интервал становится еще больше», — рассказывает Анатолий Панкрац, доктор физико-математических наук, ведущий научный сотрудник лаборатории резонансных свойств магнитоупорядоченных веществ ИФ СО РАН.

Причина этих особенностей кроется в специфической магнитной структуре кристалла. В ней можно выделить цепочки — элементы с интенсивными обменными процессами между магнитными моментами. Такой тип структуры называют квазиодномерным. При охлаждении кристалла PbMnBO4 магнитный порядок формируется сначала внутри цепочек, а затем между ними. Особенности структуры этого соединения проявляются не так ярко, как в традиционных квазиодномерных магнетиках, но влияют на его магнитные и теплофизические свойства.

Предполагалось, что благодаря иону свинца это соединение также сможет проявлять свойства мультиферроиков — веществ, в которых порядок существует сразу в нескольких взаимодействующих подсистемах: магнитной, электрической, упругой. Взаимосвязь между разными подсистемами проявляется, к примеру, в возникновении магнитоэлектрических эффектов: электрическое поле может индуцировать намагниченность, а магнитное — электрическую поляризацию. Это свойство используют для развития нового направления в электронике — спинтроники. Она предполагает управление током с помощью не только электрического, но и магнитного поля. В случае же кристалла PbMnBO4 магнитоэлектрический отклик оказался очень слабым.

Исследования ферромагнетика PbMnBO4 проводятся в рамках изучения функциональных материалов, которые можно применять в качестве датчиков, рабочих элементов приборов и устройств обработки информации. Поиск новых функциональных материалов и изучение их физических свойств расширяет возможности электроники.

Похожие новости

  • 03/11/2018

    Красноярские ученые разработали новый тип управляемых дифракционных решеток

    ​Дифракционные решетки играют центральную роль в интегральной оптике, голографии, оптической обработке данных. Ученые Института физики имени Л. В. Киренского Сибирского отделения Российской академии наук (ИФ СО РАН) и Института инженерной физики и радиоэлектроники Сибирского федерального университета (СФУ) разработали новый способ создания управляемой дифракционной решетки - оптической системы, действие которой основано на явлении световой дифракции (огибания препятствия светом), сообщила пресс-служба СФУ.
    187
  • 02/09/2017

    В Красноярске прошел 6 Сибирский семинар «Спектроскопия комбинационного рассеяния света»

    ​В Красноярске, на базе Института физики им. Л. В. Киренского СО РАН, с 21 по 23 августа 2017 года проведён 6-й Сибирский семинар «Спектроскопия комбинационного рассеяния света». Семинар зарекомендовал себя как способ повышения квалификации молодых специалистов и обмена накопленным опытом между учёными, работающими в области колебательной спектроскопии.
    961
  • 27/09/2017

    Ученые усовершенствовали фотонный кристалл для фильтрации света

    Ученые Института физики им. Л. В. Киренского Федерального исследовательского центра Красноярский научный центр СО РАН (ФИЦ КНЦ СО РАН) совместно с коллегами из Московского государственного университета им.
    1041
  • 22/06/2017

    Настоящее и будущее науки в Красноярске

    ​В мае этого года Сибирское отделение Российской академии наук, которое называют самым жизнеспособным в стране, отметило 60-летний юбилей. О том, в чем секрет красноярских ученых, что дало объединение красноярских институтов в Федеральный исследовательский центр (ФИЦ), и как фундаментальная наука предлагает бороться с лесными пожарами и онкологическими заболеваниями, беседа с директором ФИЦ «Красноярский научный центр СО РАН», доктором физико-математических наук Никитой Волковым.
    1104
  • 13/02/2018

    В Нью-Дели прошел Российско-индийский фестиваль науки

    ​В Нью-Дели прошел фестиваль науки, посвященный 30-летию сотрудничества России и Индии в атомной энергетике, сообщает пресс-служба компании "Русатом - Международная сеть". По инициативе госкорпорации "Росатом" с 6 по 9 февраля прошли мероприятия, лекции, презентации для учащихся.
    522
  • 21/04/2017

    Красноярские физики получили нанодисперсные порошки для создания аккумуляторов водорода

    Ученые Сибирского федерального университета и Института физики имени Л.В. Киренского СО РАН разработали технологию синтеза нанодисперсных порошков магния, которые могут стать перспективным материалом для изготовления аккумуляторов водорода для автомобильного транспорта.
    1212
  • 13/04/2018

    Три космических проекта красноярских ученых

    ​Космические технологии — один из приоритетов программы развития ФИЦ «Красноярский научный центр СО РАН». Уже сегодня ученые центра прогнозируют климатические и природные особенности Земли с помощью снимков с орбиты, разрабатывают замкнутые системы жизнеобеспечения для длительного пребывания человека в космосе и создают новые материалы, защищающие спутники от перегрева.
    356
  • 11/01/2018

    Красноярские ученые нашли способ усовершенствовать магнитные датчики

    ​Ученые Института физики им. Л.В. Киренского Федерального исследовательского центра Красноярский научный центр СО РАН (ФИЦ КНЦ СО РАН) обнаружили высокую чувствительность электронов к магнитному полю при их перемещении в гибридных структурах, состоящих из ферромагнетика, полупроводника и оксида.
    527
  • 20/10/2017

    Красноярские ученые разработали технологию управляемого синтеза магнитных нанопорошков

     Ученые Института физики им. Л.В. Киренского Красноярского научного центра СО РАН (КНЦ СО РАН) научились синтезировать магнитные наночастицы с ядром из никеля и непроводящей ток углеродной оболочкой.
    581
  • 13/04/2018

    Дилатометр измерит деформации космических материалов в вакууме

    Ученые из Института физики им. Л.В. Киренского Федерального исследовательского центра Красноярский научный центр СО РАН (ФИЦ КНЦ СО РАН) разработали измерительную ячейку для исследования свойств материалов при температурах близких к абсолютному нулю.
    359