​Химики уже достигли ёмкости батарей в 300 миллиампер.

Над созданием ёмких и долговечных аккумуляторов работают учёные Академгородка. Исследователи всего мира ищут замену литию ─ главного элемента мобильных источников тока. На что сделали ставку сибиряки, и по какому принципу работают новые батарейки?


Смартфоны, планшеты, ноутбуки, переносные электродрели, электромобили: огромное количество техники работает на литий-ионных аккумуляторах. Объём мирового рынка такого типа зарядных устройств составляет десятки миллиардов долларов и продолжает расти. Вслед за ним растёт и спрос на сырьё, тот же литий ─ дорогой и не самый распространённый в мире металл. Именно поэтому разные группы учёных ищут ему альтернативу.


На смену может прийти натрий ─ родственный литию металл со схожими химическими свойствами, один из самых распространённых в земной коре элементов. Стоит ─ в разы дешевле. Но есть нюанс. Важным компонентом любых аккумуляторов является углеродный материал. Так, в паре с литием работает графит. Однако натрий к нему не подходит. Как элементы разных мозаик они несопоставимы.


Научный сотрудник Института неорганической химии СО РАН Светлана Столярова пояснила: в графите между слоями есть пространство, в котором запасали литий, но с натрием так не получается. Связано это с его строением и большим размером.


Новосибирские химики нашли замену графиту, создали новый тип углеродного материала с наночастицами азота. Похож на сажу, с пористой как соты структурой. В них и накапливается натрий. Главная задача исследователей ─  сделать разработку конкурентной. Ёмкость аккумулятора не должна уступать литий-ионным аналогам, иначе ни одного инвестора новинка не заинтересует. И учёные добились этого.


Старший научный сотрудник лаборатории физикохимии наноматериалов Института неорганической химии СО РАН Юлия Федосеева сообщила, что разработчики достигли ёмкости, сопоставимые с литий-ионными аккумуляторами, ─ 300 миллиампер в час на один грамм.


Теперь время работы каждого образца тестируют на специальном стенде. Батарейки заряжают и разряжают сотни раз. Таким образом из разных модификаций аккумуляторов учёные выявляют самый ёмкий и долговечный. Предел пока не достигнут, говорят разработчики. Есть, что улучшать и дорабатывать.    

Видеосюжет

Олеся Герасименко

Похожие новости

  • 26/10/2016

    Сибирские и китайские учёные обнаружили сильную фотолюминесценцию в «дефектном» графене

    ​Специалисты из Новосибирского государственного университета, Института неорганической химии СО РАН и Пекинского университета химических технологий исследовали свойства модифицированного графита — перфорированного окисленного графена.
    5056
  • 26/07/2021

    Как выявить проблемы с почками по выдоху?

    ​Ученые из Института неорганической химии им. А. В. Николаева СО РАН исследуют материалы для сенсоров для детекции аммиака в выдыхаемом воздухе. В перспективе их можно будет использовать на спирометре для диагностики различных заболеваний по составу выдыхаемого воздуха, например заболевания почек.
    755
  • 26/09/2016

    Сибирские ученые разрабатывают новый препарат от рака на основе молибденовых кластеров

    ​Учёные из Института неорганической химии СО РАН, лаборатории полиядерных координационных соединений Новосибирского государственного университета и ряда научно-исследовательских институтов СО РАН и СО РАМН впервые доказали эффективность применения кластеров молибдена в фотодинамической терапии раковых заболеваний.
    3179
  • 09/06/2021

    Металл, побеждающий болезнь

    ​Министерство науки и инновационной политики Новосибирской области продолжает знакомить нас с процессом и участниками реализации в регионе национального проекта «Наука».  Вместе с министром Алексеем Васильевым мы побывали в Институте неорганической химии СО РАН.
    896
  • 17/05/2021

    Графен меняет всё

    Разработки на основе графена уже близки к массовому внедрению в экономику. Россия отстает, но еще может попасть в число лидеров одной из самых перспективных технологий нашего времени​. За последнее десятилетие графен (однослойный, толщиной в один атом, материал, состоящий из упакованных на плоскости в шестиугольники атомов углерода) стал не только объектом десятков тысяч научных публикаций в год, но и множества перспективных практических применений, способных радикально изменить материальный мир вокруг нас.
    2824
  • 24/03/2018

    Ученые ИНХ СО РАН поймали в ловушку молекулярный бром

    ​Российские ученые проанализировали условия синтеза комплексных соединений металлов, содержащих полигалогенидные фрагменты, и описали три новых соединения этого класса. Собрав данные о протекании реакций в различных условиях, химики рассчитывают сделать синтез полигалогенидных комплексов более предсказуемым.
    1461
  • 14/12/2020

    Новосибирские ученые разработали технологию формирования наноприборов для нейроморфных систем и нанофотоники

    В новой работе исследователи значительно развили свой подход формирования наноприборов, добившись управляемого синтеза высококачественных монокристаллов диоксида ванадия (VO2) на трехмерных наноструктурах кремния, а также селективного роста массивов наноколец.
    737
  • 05/07/2019

    Неорганические агенты для онкотерапии

    ​Продолжаем представлять молодых ученых - лауреатов премии мэрии Новосибирска этого года. Руководитель лаборатории биоактивных неорганических соединений Института неорганической химии им. А. В. Николаева СО РАН, кандидат химических наук Михаил Шестопалов был награжден за изучение металлокластерных комплексов в качестве агентов для медицинской диагностики и терапии онкозаболеваний.
    1246
  • 28/12/2020

    Кадры для инноваций: об Институте химических технологий

    ​Новосибирский государственный университет совместно с Институтом катализа СО РАН создал новое структурное подразделение — Институт химических технологий (ИНХИТ). На этой площадке ученые будут готовить специалистов в интересах промышленных предприятий, а также вести исследовательскую и инновационную деятельность.
    1117
  • 24/06/2021

    Чувствительные сенсоры создали новосибирские учёные совместно с коллегами из Улан-Удэ

    ​ Минимальное отклонение или деформацию в доли процентов способна обнаружить разработка новосибирских учёных. Чувствительные сенсоры создали сотрудники Института неорганической химии СО РАН совместно с коллегами из Улан-Удэ.
    316