В проект «Академгородок 2.0» вошли сразу две заявки, касающиеся бор-нейтронозахватной терапии — эффективного метода борьбы с неизлечимыми онкологическими заболеваниями. О мерах, которые предпринимаются для того, чтобы проект поскорее воплотился в жизнь, и о том, какие на этом пути есть препятствия, говорили на круглом столе на VI Международном форуме технологического развития и выставке «Технопром».

Бор-нейтронозахватная терапия на сегодня является одним из наиболее перспективных методов борьбы с раком — она позволяет производить точечное поклеточное уничтожение некоторых злокачественных опухолей, в том числе и тех, что считаются неизлечимыми (например, глиобластомы головного мозга), а кроме того, борется с заболеванием на терминальной стадии.  
 

Согласно прогнозу Всемирной организации здравоохранения, к 2025 году онкология выйдет на первое место среди причин смертности, опередив сердечно-сосудистые заболевания.  

«В Институте ядерной физики им. Г. И. Будкера СО РАН в последние 18—20 лет в инициативном порядке велись работы по созданию ускорительного источника нейтронов специально для БНЗТ. Они увенчались успехом», — рассказывает заведующий лабораторией ИЯФ СО РАН доктор физико-математических наук Владимир Евгеньевич Блинов.
 
В проект «Академгородок 2.0» вошли две проектные заявки, касающиеся БНЗТ. Одна из них подразумевает организацию проведения клинических испытаний на безнадежно больных пациентах силами томского Научно-исследовательского института онкологии (нужен примерно миллиард рублей). Другая — строительство Центра бор-нейтронозахватной терапии при Новосибирском государственном университете (на это требуется около полутора миллиарда рублей). 
 
Проект является междисциплинарным. Помимо НГУ в нем участвуют институты СО РАН, научные организации из Москвы, Снежинска, а также компания Tri Alpha Energy из США.
 
 
Однако инвестор для строительства Центра БНЗТ пока не найден. Между тем, финансовое взаимодействие с венчурными фондами позволит разработать ускорительный источник нейтронов клинического класса, который можно будет внедрять в уже работающие онкоцентры. Будут созданы: проект типового центра БНЗТ, компактный источник нейтронов для его оснащения, медицинский протокол лечения, отечественный бор-10 содержащий препарат для проведения БНЗТ, а также начнет осуществляться подготовка кадров по этому направлению — для этого в НГУ уже запущена магистерская программа по ядерной медицине.
 

Предполагается, что Центр БНЗТ станет одной из трех составляющих кластера ядерной медицины. Туда войдут также Центр ядерной медицины, где будут осуществляться диагностика онкозаболеваний и контроль эффективности проводимого лечения, и Центр протонной терапии (метод позволяет облучать глубоко залегающие опухоли с минимальным повреждением здоровых тканей). Центр БНЗТ планируют строить с 2019-го по 2024 годы. 

 
БНЗТ на карте рака
 
Руководитель нейрохирургичекого отдела Европейского медицинского центра доктор медицинских наук Алексей Леонидович Кривошапкин рассказал о самых современных способах лечения онкозаболеваний и о применении метода БНЗТ в локальном контроле глиобластом. «Существует стандарт лечения пациентов с этим видом рака, который позволяет улучшить прогнозы пятилетней выживаемости до 10 %, — сказал Алексей Кривошапкин, — он включает в себя хирургию, лучевое воздействие и химиотерапию. Однако если посмотреть, чего мы добились за 50 лет, то похвастаться особо нечем. В целом средняя продолжительность жизни у пациентов немного превышает один год».
 
Причина в том, что при медикаментозном лечении рака используются кортикостероиды, которые вызывают иммунодефицит, ухудшая прогноз лечения, а лучевая терапия разрушает защитные свойства мозга, способствуя инвазии опухолевых клеток.  «Получается, что мы не только лечим, но и, по сути, губим пациентов», — прокомментировал нейрохирург.
 
Наиболее эффективным способом лечения глиобластомы является радикальное удаление злокачественных опухолей — радиохирургия и брахиотерапия (Вид радиотерапии, когда источник излучения вводится внутрь пораженного органа.— Прим. ред.), описан случай пациента, который живет после такого лечения уже 18 лет (правда, не без осложнений). Но и здесь встает проблема повреждения здоровых тканей мозга. Поэтому, например, брахиотерапия применяется только для лечения пациентов с рецидивом глиобластомы. 
 
И здесь БНЗТ приобретает особую значимость. «Исследование с экспериментальной глиомой на клетках, проведенное на базе НГУ, продемонстрировало, что на установке Института ядерной физики действительно можно добиться остановки роста опухолевых клеток. По сути, эта терапия уничтожает злокачественные клетки, сохраняя защитные резервы организма», — сказал Алексей Кривошапкин.
 
Руководитель департамента нейрохирургии университета Цукубы (Япония) Акира Матсмура рассказал о проводимых клинических испытаниях БНЗТ для форм рака, не излечимых другими методами. В качестве источника нейтронов был использован ядерный реактор, модифицированный специально для исследований БНЗТ: в нем появились специфические крематоры, позволяющие изменять энергию нейтронов и доставлять как самый низкоэнергетический пучок, так и пучок с энергией больше 10 МэВ.
 
«Исследования проводились на редких опухолях и небольшом количестве пациентов, — сказал Акира Матсмура. — Мы лечили меланомы, рак легких, опухоли печени и стенки грудной клетки, глиомы. Также у нас был зафиксирован первый в мире случай успешного использования БНЗТ при раке, локализованном в голове и шее».
 
В университете Цукубы разработана специальная система планирования лечения, которая является значимой для проведения клинических испытаний. При внедрении нейтронных ускорителей ее можно будет использовать для гораздо большего числа пациентов. 
 
«БНЗТ — терапия “одного дня”: после процедуры, занимающей около часа, пациент может идти домой, в то время как при стандартной лучевой терапии человек получает облучение дозами в течение месяца. Если ускорители такого класса станут более доступными, это вызовет сдвиг парадигмы, исходной модели лечения онкозаболеваний», — подчеркнул профессор Матсмура.
 

БНЗТ можно использовать не при всех видах рака. Этот способ лечения онкологии подходит, если соблюдены как минимум два условия: препарат бора накапливается в конкретной опухоли, и сама она находится в пределах восьми сантиметров от поверхности.

Установка: в режиме готовности
 
«В последнее десятилетие достигнут заметный прогресс в разработке ускорительных источников нейтронов для БНЗТ. Началось сооружение нескольких клиник (в Японии, Финляндии, Китае). В ИЯФ СО РАН разработан компактный ускорительный источник нейтронов для БНЗТ с выдающимися показателями», — рассказывает старший научный сотрудник ИЯФ СО РАН кандидат физических наук Игорь Владимирович Шиховцев.
 
На этом источнике были проведены доклинические испытания на культурах опухолевых клеток человека и млекопитающих и на мелких лабораторных животных. В исследованиях, проведенных совместно с Институтом молекулярной и клеточной биологии СО РАН и университетом города Цукуба, показано, что поток нейтронов эффективно снижает жизнеспособность опухолевых клеток в присутствии бор-10. Следующий этап — клинические испытания (первые в России), ускоритель для которых предлагается разместить в одном из зданий ИЯФа.
 
«Чтобы не терять пять лет на строительство здания в университетском кампусе и начать испытания, условно говоря, в 2020 году, есть быстрое техническое решение: на базе существующего здания, проведя его реконструкцию, установить ускоритель, докупить минимальное необходимое медицинское оборудование, укомплектовать реанимацию и терапию, нанять необходимый персонал и начать терапию. На это нужны три года и один миллиард рублей», — говорит директор ИЯФ СО РАН академик Павел Владимирович Логачёв. Предполагается, что этот проект будет реализован совместно с томским Научно-исследовательским институтом онкологии.
 
Однако главная задача — нейтронный источник для Центра БНЗТ НГУ. Первый такой прибор на основе ускорителя ИЯФа будет поставлен в китайскую клинику — работы ведутся совместно ИЯФ СО РАН и компанией Tri Alpha Energy (США). Для него уже изготовлены отдельные узлы, воедино установка будет собираться в начале 2019 года. 
 
Препараты бора: на стадии разработки
 
«Существуют только два препарата бора, применяющиеся сегодня в клинике. Это борфенилаланин и боркоптат. Концентрация бора, которую они могут обеспечить в целевой опухолевой клетке, всего в три раза выше, чем в окружающих тканях. Это позволяет проводить терапию весьма эффективно, что показано и в Японии, и в других странах. Тем не менее вопрос доставки более высоких концентраций бора в опухолевую клетку стоит достаточно остро, — рассказывает заместитель директора и заведующий лабораторией биотехнологии Института химической биологии и фундаментальной медицины СО РАН кандидат биологических наук Владимир Александрович Рихтер.— В настоящее время разрабатывается ряд препаратов совершенно различных химических классов, которые должны обеспечить это условие. Однако у всех них есть один существенный недостаток: они не обеспечивают адресность».
 
Проблему пытаются решить исследователи ИХБФМ СО РАН. Известно, что все ткани организма имеют свою уникальную топографию поверхности. Ученые решили попробовать подобрать соединение, которое будет связываться лишь с определенным типом топографии. Помогают в этом бактериофаги. Благодаря своим пептидам они обладают свойством «привязывать» к себе частицы бора и эффективно доставлять их внутрь раковой клетки. «Таким образом, мы имеем метод, который позволяет получать ракету направленного действия, и направлять ее к тем органам или тканям, которые нам интересны», — отметил Владимир Рихтер
 
Наработку пептидов, которые обеспечивают специфичность, можно организовать в малотоннажное или крупнотоннажное производство и, например, модифицировать с их помощью наночастицы, прикрепляя к ним соединения бора.
 
В ЦКП «SPF-виварий» ФИЦ «Институт цитологии и генетики СО РАН» также работают над целевой доставкой препаратов к опухоли. «Частицы определенного размера, которые не проходят гематоэнцефалический барьер и не попадают в головной мозг, могут накапливаться его опухолью, поскольку некоторые ее кровеносные сосуды проницаемы для таких частиц, — прокомментировал заведующий отделом генофондов экспериментальных животных, научный руководитель ЦКП «SPF-виварий» ИЦиГ СО РАН доктор биологических наук Михаил Павлович Мошкин. — В мозг наночастицы заходят по двум основным путям: либо из носовой полости, будучи охваченными окончаниями обонятельных нервов, либо через гипофиз, где нет выраженного гематоэнцефалического барьера. Сегодня мы знаем, как они идут, когда приходят в те или иные участки мозга, и знаем, куда они вообще не попадают при разных вариантах введения. Нам удалось показать: если такие наночастицы вводить через носовую полость, то они заселяют только те участки опухоли, которые непосредственно лежат на нервных путях, соединяющих обонятельный тракт с другими структурами мозга».
 
Работа над препаратами для БНЗТ ведется и в Новосибирском институте органической химии им. Н. Н. Ворожцова СО РАН.
 
«В нашем институте мы можем осуществлять исследования в двух направлениях: во-первых, по программе импортозамещения синтезировать борфенилаланин, который мог бы быть дешевле зарубежных аналогов (пока из-за отсутствия финансирования эти работы приостановлены). Во-вторых — заниматься созданием молекул, тех, что можно пристыковывать к бактериофагам, — говорит директор НИОХ СО РАН доктор физико-математических наук Елена Григорьевна Багрянская. — Заведующий лабораторией органических светочувствительных материалов НИОХ СО РАН доктор химических наук Владимир Владимирович Шелковников вместе с Владимиром Александровичем Рихтером занимаются синтезом соединений бора, которые будут пристыкованы к бактериофагу. От BCl3 до соединения, обогащенного бор-10, надо пройти очень много стадий». Первичный BCl3 предполагается закупать в Снежинске, сейчас этот вопрос находится на стадии обсуждения.
 
Коммерческая стоимость лечения методом БНЗТ составит 1,6 миллионов рублей (для сравнения, только первый год терапии опухолей головного мозга другими методами обойдётся от 1,8 до 18 млн рублей, а каждый последующий потребует от миллиона) — она укладывается  в затраты, которые могут быть оплачены из программы высокотехнологичной медицинской помощи.
 
Юлия Клюшникова
Диана Хомякова

Источники

На пути к БНЗТ
Наука в Сибири (sbras.info), 03/09/2018

Похожие новости

  • 22/09/2016

    В Новосибирске планируют создать клинику для лечения методом БНЗТ

    ​Новосибирский государственный университет в сотрудничестве с российскими и зарубежными научными организациями работает над реализацией масштабного проекта по созданию клиники для лечения глиобластомы мозга и других онкологических заболеваний с помощью метода бор-нейтронозахватной терапии и ускорительного источника нейтронов Института ядерной физики им Г.
    2283
  • 29/12/2017

    Топ-20 наиболее интересных разработок сибирских ученых в 2017 году

    На портале «Новости сибирской науки» можно познакомиться с инновациями и последними достижениями сибирских ученых. Сегодня мы предлагаем вашему вниманию Топ-20  сообщений о наиболее значимых и интересных научных разработках 2017 года, размещенных на нашем портале.
    882
  • 20/06/2018

    Возможные перспективы Академгородка 2.0

    ​Ведущие ученые СО РАН продолжили обсуждение проектов развития научной инфраструктуры Новосибирского научного центра. Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН выступил инициатором проекта «Сибирский центр малотоннажной химии».
    333
  • 06/04/2018

    Павел Логачев: «Как правило, мы специализируемся на том, что никто никогда не делал»

    ​Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) можно считать не только крупнейшим академическим институтом страны и одним из ведущих мировых центров в области физики высоких энергий, но и одним из самых коммерчески эффективных институтов СО РАН.
    444
  • 07/08/2018

    Неутомима, как силы природы

    ​Исследование систем репарации ДНК — «ремонта» этой сложной молекулы — поистине масштабная задача, решением которой занимаются передовые исследовательские коллективы и звезды мировой науки. Одна из них — заведующая лабораторией биоорганической химии ферментов Института химической биологии и фундаментальной медицины СО РАН член-корреспондент РАН — Ольга Ивановна Лаврик отмечает юбилей.
    188
  • 07/03/2016

    В ИЯФ СО РАН разработали ключевые компоненты нового коллайдера

    ​ ​В Институте ядерной физики им. Г.И. Будкера СО РАН созданы вакуумные камеры, корректирующие магниты, электроника регистрации и программное обеспечение для установки SuperKEKB, которая монтируется в японской Лаборатории физики высоких энергий (КЕК) в Цукубе.
    1940
  • 31/05/2016

    Новосибирские ученые исследуют кровеносную систему

    ​Кровеносная система лежит в основе функционирования головного мозга, и в области её работы ещё много «белых» пятен. Сибирские учёные в сотрудничестве с медиками решили устранить некоторые из них.  Исследование имеет и прикладной выход: уже создана уникальная система мониторинга нейрохирургических операций, метод повышения качества магнитно-резонансной томографии, а также инструментарий для персонализированного моделирования протекания некоторых болезней.
    1716
  • 03/02/2018

    Ученые новосибирского Академгородка представили новейшие достижения СО РАН

    ​​Перед Днем российской науки-2018 три крупнейших института СО РАН – Институт ядерной физики им. Будкера, Институт химической биологии и фундаментальной медицины и Институт гидродинамики им. Лаврентьева  – открыли свои двери для посетителей.
    1021
  • 06/09/2016

    Наночастицы - невидимые и влиятельные

    ​Прибор, сконструированный в Институте химической кинетики и горения им. В.В. Воеводского СО РАН, помогает обнаружить наночастицы за несколько минут. — Есть работы российских, украинских, английских и американских исследователей, которые показывают, что в городах с высоким содержанием наночастиц отмечается повышенный уровень заболеваемости сердечными, онкологическими и легочными заболеваниями, — подчеркивает старший научный сотрудник ИХКГ СО РАН кандидат химических наук Сергей Николаевич Дубцов.
    1027
  • 13/07/2018

    Новосибирские ученые предложили создать Национальный центр генетических технологий

    ​ФИЦ «Институт цитологии и генетики СО РАН» выступил с инициативой создания Национального центра генетических технологий. Как рассказал избранный директор ФИЦ ИЦиГ СО РАН член-корреспондент РАН Алексей Владимирович Кочетов, проект ЦГТ нацелен на решение сразу нескольких стратегических задач: «Прежде всего, мы хотим на одной площадке получить полный набор современных исследовательских технологий, обеспечивающий возможность фундаментального изучения генетических систем и процессов человека, животных, растений и микроорганизмов на базовых иерархических уровнях организации живых систем: молекулярно-генетическом, клеточном, тканевом, организменном, популяционном, экосистемном».
    321