​Российские ученые проанализировали условия синтеза комплексных соединений металлов, содержащих полигалогенидные фрагменты, и описали три новых соединения этого класса. Собрав данные о протекании реакций в различных условиях, химики рассчитывают сделать синтез полигалогенидных комплексов более предсказуемым. Статья с результатами работы опубликована в журнале Dalton Transactions. Исследование поддержано грантом Российского научного фонда.

Авторы статьи исследовали реакции получения галогенидных комплексов – соединений атомов металлов и галоген-ионов (заряженных атомов галогенов: фтора, хлора, брома или йода). Изучая галогенидные комплексы висмута, ученые обнаружили, что если эти комплексы синтезируются в среде, содержащей растворенный бром (Br2), то он может быть «пойман» комплексными анионами и выделен в твердую фазу. Фрагменты этого брома удерживаются в твердом теле особыми связями, так называемыми галогеновыми. Такие соединения могут выступать в качестве удобных аналогов брома в органическом синтезе: если бром, едкую ядовитую, темно-красную жидкость, растворить в бромистоводородной кислоте и добавить туда соли висмута и различные катионы, то может быть получено соединение, в котором соединенные ковалентной связью два атома галогена находятся в твердом виде. При этом он сохраняет свою химическую активность, в частности избирательно реагирует с кратными связями углерод-углерод, что может сделать это соединение ценным бромирующим агентом для органической химии.

В последней работе химики дали несколько новых примеров соединений такого рода и показали, в каких условиях реакция по такой схеме идет, а в каких – нет. Как выяснили ученые, образование полигалогенидных комплексов, их состав и структура зависят от того, какие органические катионы присутствуют в среде, в которой протекает реакция.

«Главная цель работы – создать некую модель, которая позволит предсказывать, что же в этих системах образуется. Дело в том, что у обычных галогенидных комплексов, даже без дигалогена, которые известны сотни лет, есть одно забавное свойство: в присутствии разных катионов они образуют совершенно разные структуры анионов, и предсказать, что именно у вас образуется, на данный момент практически невозможно, это дело случая», – рассказал один из авторов работы, старший научный сотрудник Института неорганической химии имени А.В. Николаева СО РАН Сергей Адонин.

Пока, несмотря на множество проведенных реакций, авторам работы не удалось объяснить, почему в присутствии некоторых катионов полигалогенидные комплексы образуются, а при других — нет. Химики рассчитывают, что большей определенности удастся добиться, когда будет собран большой объем данных об условиях и результатах реакций. Таким образом, можно будет сделать эту область химии более предсказуемой.

Источники

Молекулярный бром пойман в ловушку
Wi-fi.ru, 23/03/2018
Молекулярный бром пойман в ловушку
Индикатор (indicator.ru), 23/03/2018
Молекулярный бром пойман в ловушку
Российский научный фонд (рнф.рф), 23/03/2018
Российские химики поймали в ловушку молекулярный бром
Margust (gazeta-margust.ru), 23/03/2018
Российские химики поймали в ловушку молекулярный бром
Газета.Ru, 23/03/2018
Молекулярный бром пойман в ловушку
Nanonewsnet.ru, 25/03/2018
Молекулярный бром пойман в ловушку
Координационный совет по делам молодежи в научной и образовательной сферах при Совете при Президенте РФ по науке и образованию (youngscience.gov.ru), 02/04/2018

Похожие новости

  • 26/10/2016

    Сибирские и китайские учёные обнаружили сильную фотолюминесценцию в «дефектном» графене

    ​Специалисты из Новосибирского государственного университета, Института неорганической химии СО РАН и Пекинского университета химических технологий исследовали свойства модифицированного графита — перфорированного окисленного графена.
    4956
  • 26/07/2021

    Как выявить проблемы с почками по выдоху?

    ​Ученые из Института неорганической химии им. А. В. Николаева СО РАН исследуют материалы для сенсоров для детекции аммиака в выдыхаемом воздухе. В перспективе их можно будет использовать на спирометре для диагностики различных заболеваний по составу выдыхаемого воздуха, например заболевания почек.
    677
  • 05/07/2019

    Неорганические агенты для онкотерапии

    ​Продолжаем представлять молодых ученых - лауреатов премии мэрии Новосибирска этого года. Руководитель лаборатории биоактивных неорганических соединений Института неорганической химии им. А. В. Николаева СО РАН, кандидат химических наук Михаил Шестопалов был награжден за изучение металлокластерных комплексов в качестве агентов для медицинской диагностики и терапии онкозаболеваний.
    1214
  • 09/06/2021

    Металл, побеждающий болезнь

    ​Министерство науки и инновационной политики Новосибирской области продолжает знакомить нас с процессом и участниками реализации в регионе национального проекта «Наука».  Вместе с министром Алексеем Васильевым мы побывали в Институте неорганической химии СО РАН.
    855
  • 17/05/2021

    Графен меняет всё

    Разработки на основе графена уже близки к массовому внедрению в экономику. Россия отстает, но еще может попасть в число лидеров одной из самых перспективных технологий нашего времени​. За последнее десятилетие графен (однослойный, толщиной в один атом, материал, состоящий из упакованных на плоскости в шестиугольники атомов углерода) стал не только объектом десятков тысяч научных публикаций в год, но и множества перспективных практических применений, способных радикально изменить материальный мир вокруг нас.
    2069
  • 26/09/2016

    Сибирские ученые разрабатывают новый препарат от рака на основе молибденовых кластеров

    ​Учёные из Института неорганической химии СО РАН, лаборатории полиядерных координационных соединений Новосибирского государственного университета и ряда научно-исследовательских институтов СО РАН и СО РАМН впервые доказали эффективность применения кластеров молибдена в фотодинамической терапии раковых заболеваний.
    3138
  • 19/07/2021

    Новосибирские учёные создают максимально безопасные препараты для химиотерапии

    Известно, что во время лечения лекарства нередко проявляют свою токсичность, влияют на работу здоровых органов.  Поэтому важно найти щадящее средство. В научном поиске помог луч света.   Один из перспективных элементов для замены платины в препаратах химиотерапии ─ рутений.
    263
  • 14/12/2020

    Новосибирские ученые разработали технологию формирования наноприборов для нейроморфных систем и нанофотоники

    В новой работе исследователи значительно развили свой подход формирования наноприборов, добившись управляемого синтеза высококачественных монокристаллов диоксида ванадия (VO2) на трехмерных наноструктурах кремния, а также селективного роста массивов наноколец.
    711
  • 28/12/2020

    Кадры для инноваций: об Институте химических технологий

    ​Новосибирский государственный университет совместно с Институтом катализа СО РАН создал новое структурное подразделение — Институт химических технологий (ИНХИТ). На этой площадке ученые будут готовить специалистов в интересах промышленных предприятий, а также вести исследовательскую и инновационную деятельность.
    1065
  • 24/06/2021

    Чувствительные сенсоры создали новосибирские учёные совместно с коллегами из Улан-Удэ

    ​ Минимальное отклонение или деформацию в доли процентов способна обнаружить разработка новосибирских учёных. Чувствительные сенсоры создали сотрудники Института неорганической химии СО РАН совместно с коллегами из Улан-Удэ.
    271