​Ученые впервые смогли получить сильный тороидальный дипольный отклик электромагнитного поля в широком диапазоне частот. Такой отклик связан с особой конфигурацией токов, которая позволяет сильно концентрировать электромагнитное поле. 

Его удалось экспериментально зарегистрировать в специально созданной диэлектрической метарешетке. Полученные результаты можно использовать при создании материалов, не рассеивающих свет, а также для эффективного управления электромагнитными полями. Результаты опубликованы в журнале Advanced Optical Materials.

Для того, чтобы создать точные сенсоры, нелинейные оптические приборы или устройства хранения информации, нужно научиться эффективно управлять электромагнитным полем: концентрировать его, менять направление колебаний или поляризацию волн. Регулируя возбуждаемые токи внутри объекта, можно контролировать взаимодействие дипольных откликов электромагнитного излучения и менять реакцию объекта на внешнее воздействие. Например, объект можно сделать невидимым. Для этого в одной структуре нужно совместить два вида диполей: обычный электрический и более сложный тороидальный диполь.

До сих пор исследователи экспериментально регистрировали либо очень слабый тороидальный диполь, либо он существовал только в очень узком диапазоне частот, поэтому применить его где-либо было сложно. Кроме того, экспериментальные структуры создавали на основе металлов, а это приводило к большим энергетическим потерям. Чтобы преодолеть это, международный коллектив ученых из России, Австралии и США впервые разработал и создал метарешетку из диэлектрического материала с тороидальным дипольным откликом, доминирующим в широком диапазоне частот.

"Мы создали периодическую структуру и провели с ней ряд экспериментов, чтобы убедиться, что в структуре силен тороидальный диполь. В ходе изучения спектра и распределения электромагнитного поля нам удалось зарегистрировать характерные для тороидального диполя черты. Поле имело высокую концентрацию и сильную продольную компоненту. Сильная продольная компонента подразумевает, что колебания электромагнитного поля структуры по направлению совпадают с его распространением. Это может пригодиться, например, для создания чувствительных сенсоров отдельных молекул или для реализации нелинейных эффектов в оптике", ‒ рассказывает один из авторов работы Андрей Саянский, аспирант Университета ИТМО.

Для создания метарешетки ученые использовали диэлектрические материалы с небольшим коэффициентом преломления, хотя обычно для таких целей выбирают диэлектрики с высокими значениями коэффициента. Результаты показали, что более доступные "средние" диэлектрики также можно использовать, чтобы избежать потерь энергии. Еще одна особенность работы в том, что в полученной метарешетке тороидальный отклик можно возбуждать волной любой поляризации. Это поможет расширить сферу применения материалов и устройств на основе метарешетки.

Ученые надеются, что благодаря более дешевым материалам их коллеги смогут изучать подобные структуры активнее. Это поможет и более широкому применению диэлектрических метарешеток на практике. Работа поддержана грантом Российского научного фонда (РНФ) и проектом Австралийского исследовательского центра.

Похожие новости

  • 09/04/2019

    Российские ученые уточнили, как космические лучи действуют на мозг

    ​Нейрофизиологи из МФТИ, НИИ Анохина и Курчатовского института проследили за действием нейтронов на мозг мышей и пришли к выводу, что они не ухудшают интеллектуальные способности грызунов, но подавляют формирование новых клеток в центре памяти.
    142
  • 04/08/2017

    Новосибирские ученые исследуют новые типы волоконных лазеров для линий связи

    Ученые НГУ, выигравшие грант Российского научного фонда (РНФ), намерены создать новый тип волоконных лазеров для высокоскоростных линий связи. Успешная реализация проекта позволит применить разработанные лазеры в качестве задающих источников информационного сигнала в телекоммуникационных системах на основе суперканалов.
    1421
  • 26/12/2016

    В ИЯФ СО РАН разрабатывают новый способ лечения опухолей мозга

    ​Сотрудники Института ядерной физики им. Г. И. Будкера СО РАН исследуют метод микропучковой рентгеновской терапии злокачественных опухолей мозга. Уже проведены пробные эксперименты по облучению клеточных культур глиомы человека с добавлением наночастиц оксида марганца.
    1569
  • 23/01/2019

    Новосибирские физики смоделировали атмосферу экзопланет

    ​Сотрудники Института лазерной физики СО РАН в лабораторных условиях моделируют плазменный ветер, аналогичный тому, что испускают объекты в сотнях световых лет от Земли. Эти исследования имеют большое значение для изучения состава и динамики верхней атмосферы разных классов экзопланет, в том числе потенциально пригодных для жизни.
    595
  • 25/09/2018

    Физики измерили намагниченность диэлектрика за одну триллионную долю секунды

    Коллектив ученых из России, Германии, Швеции и Японии разработал способ изменить намагниченность диэлектрика, воздействуя на него сверхкороткими лазерными импульсами. Ученым удалось добиться времени изменения намагниченности в одну пикосекунду – это в 100 раз меньше, чем предполагалось ранее.
    413
  • 19/06/2018

    Ученые ИАиЭ СО РАН помогут телескопу найти темную материю

    ​Специалисты Института автоматики и электрометрии СО РАН в сотрудничестве с немецкой компанией Dioptic разработали голограмму, чтобы настроить четырехлинзовый объектив. Он нужен для работы с ближнеинфракрасным спектрометром и фотометром нового космического телескопа "Евклид", задача которого - исследовать причины расширения Вселенной и найти темную материю.
    568
  • 14/05/2018

    Ученые знают, как заставить проводник из графена лучше работать

    ​Графен – очень хороший проводник и перспективный материал, обладающий необычными свойствами. Сегодня ученые могут изготавливать уникально чистые образцы графена, которые содержат всего несколько примесей, мешающих его работе.
    430
  • 20/06/2018

    Ученые объяснили формирование суперземель

    ​Российские ученые проанализировали эволюцию молодых звезд и выяснили, как формируются планеты на ранних стадиях. Это поможет изучать процессы, происходящие при образовании экзопланет, что позволит лучше понять структуру и строение космических тел, находящихся в том числе и в Солнечной системе.
    559
  • 31/05/2016

    Новосибирские ученые исследуют кровеносную систему

    ​Кровеносная система лежит в основе функционирования головного мозга, и в области её работы ещё много «белых» пятен. Сибирские учёные в сотрудничестве с медиками решили устранить некоторые из них.  Исследование имеет и прикладной выход: уже создана уникальная система мониторинга нейрохирургических операций, метод повышения качества магнитно-резонансной томографии, а также инструментарий для персонализированного моделирования протекания некоторых болезней.
    2366
  • 09/04/2019

    Сибирские ученые оптимизируют работу электронных дисплеев органическими полупроводниками

    ​Ученые Новосибирского государственного университета (НГУ) займутся исследованием свойств органических полупроводников (материалов, используемых в электронике), чтобы повысить эффективность используемых сейчас электронных дисплеев, сообщил ТАСС руководитель лаборатории органической оптоэлектроники НГУ Евгений Мостович.
    242