​Найден способ создавать сверхтонкие элементы наноэлектроники при помощи лазерных лучей в форме бублика. Новая технология поможет уменьшить элементы на микросхемах до размеров нескольких десятков атомов, что в десять раз меньше, чем возможно сегодня. Работа была выполнена при поддержке гранта Российского научного фонда. Результаты исследования опубликованы в журнале Applied Physics Letters.

Для создания микросхем с нанометровыми элементами используют специальные зеркала, фокусирующие рентгеновское излучение. Чтобы сделать элементы размером менее 20 нм, нужно использовать излучение с еще меньшей длиной волны. Однако фотоны такого излучения несут очень большую энергию и неминуемо портят зеркало. Ученые из Института теоретической физики имени Л.Д. Ландау совместно с зарубежными коллегами определили, какие процессы происходят с поверхностью зеркала из нескольких слоев хрома и золота при «бомбардировке» высокоэнергетическими фотонами.

Физики использовали так называемый вихревой луч, яркость которого распределена по кольцу вокруг его оси, то есть в форме бублика. В более ранних работах было показано, что обычный луч с максимумом яркости на центральной оси пучка выбивает из зеркала несколько слоев хрома и золота, оставляя на месте воздействия своего рода кратер, похожий на те, что оставляют упавшие на Землю метеориты. Когда экспериментаторы облучили зеркало вихревым лучом, на поверхности вместо типичного кратера образовалась кольцевая выемка с тонкой микроиглой, возвышающейся в центре.

«Это выглядело непонятным, как будто вещество из выемки собралось в центральной игле, там где интенсивность пучка была очень малой, Чтобы объяснить результат эксперимента, мы рассчитали траектории всех атомов хрома и золота, которые подверглись воздействию луча – это примерно 100 млн атомов», — рассказал один из авторов исследования, Василий Жаховский, научный сотрудник ИТФ имени Л.Д. Ландау.

Оказалось, что в месте наибольшей интенсивности пучка – то есть по кольцу – резко растут температура и давление. Максимальное давление достигает 200 тысяч атмосфер — такие условия характерны для детонации небольшой атомной бомбы. Это колоссальное давление возникает на несколько пикосекунд в очень маленьком пространстве кольца диаметром всего 2 микрометра. В таких экстремальных условиях вещество зеркала плавится и стремится расшириться. Однако золото и хром нагреваются неодинаково, поэтому слои разных металлов по-разному участвуют в этом процессе.

"Получается что-то похожее на сильно накачанное колесо, внутри которого под эластичной покрышкой из расплава хрома находится золотой пар под огромным давлением", - добавил ученый.

При этом в центре пятна, где интенсивность луча близка к нулю, остается холодный "остров", над которым образуется тонкая струя из чистого хрома. Так как слой прогрева небольшой, вся система быстро остывает, и струя затвердевает. В результате формируется микроигла. Таким образом, ученые объяснили, почему при воздействии вихревого луча лазера на зеркале образуются мироиглы, а не кратеры. Новая работа показала, что, используя лазер лучом-бубликом и многослойные подложки, можно получать весьма сложные наноэлементы. Описанная технология позволяет производить микросхемы с элементами толщиной 2-4 нм, то есть в несколько атомов. Кроме того, регулируя параметры лазерного воздействия, можно получать элементы различного химического состава.

Источники

Луч-бублик поможет создать наноиглы для миниатюрной электроники
Российский научный фонд (rscf.ru), 05/06/2018

Похожие новости

  • 10/07/2019

    В России пройдут испытания новой модели сверхзвукового самолёта

    В России в 2019 году пройдут испытания модели сверхзвукового делового самолета разработки "Туполева" со сниженным уровнем звукового удара. Его испытают в аэродинамической трубе, сообщил "Интерфаксу" источник в авиапроме.
    235
  • 12/06/2019

    Глава ОИЯИ рассказал о значении участия России в ЦЕРН

    Полноправное участие России в Европейской организации по ядерным исследованиям (ЦЕРН) необходимо для участия отечественных ученых в проектах в области физики высоких энергий и приведет к укреплению позиций российской науки в мире, считает директор Объединенного института ядерных исследований (ОИЯИ) академик Виктор Матвеев.
    324
  • 06/03/2019

    Российские ученые научились «разряжать» грозовые облака

    ​Российские физики научились высекать молнию из грозового облака до того, как оно приблизится к взрыво- или пожароопасному объекту. Опыты проводились с помощью искусственных грозовых ячеек, куда вводили модельные гидрометеоры.
    359
  • 16/10/2018

    Профессор Ильдар Габитов: электроника зашла в тупик

    ​Фотонный компьютер, Wi-Fi из лампочки, материалы-невидимки, боевые лазеры и сверхчувствительные сенсоры... Все это плоды одной и той же науки - фотоники. О том, почему именно свет сегодня стал объектом изучения чуть ли не для половины физиков во всем мире, "Огоньку" рассказал профессор Сколтеха Ильдар Габитов.
    581
  • 25/09/2018

    Физики измерили намагниченность диэлектрика за одну триллионную долю секунды

    Коллектив ученых из России, Германии, Швеции и Японии разработал способ изменить намагниченность диэлектрика, воздействуя на него сверхкороткими лазерными импульсами. Ученым удалось добиться времени изменения намагниченности в одну пикосекунду – это в 100 раз меньше, чем предполагалось ранее.
    486
  • 14/12/2018

    Грантополучатели РНФ в программе России-24 «Наука»

    Несколько дней назад вручили Нобелевскую премию за исследования в области лазерной физики. В России тоже успешно работают в этой области. Так, Лаборатория лазерного воздействия Объединенного института высоких температур (ОИВТ) РАН Михаила Аграната разработала и совершенствует фемтосекундный лазерный скальпель – оптический пинцет, который работает в бесконтактном режиме и помогает с генетической диагностикой эмбриона, если ему от родителей передались какие-то аномалии.
    991
  • 15/08/2018

    Описаны механизмы увеличения энергии электронов в химических реакциях

    ​Ученые описали, как можно увеличить энергию электронов в ходе химических реакций. Принципы этого процесса используются в химическом синтезе, однако детально их ранее не исследовали. Работа выполнена при поддержке гранта РНФ и опубликована в журнале Angewandte Chemie.
    921
  • 28/05/2019

    Ученые из России сделали угольные ТЭС более экологичными и выгодными

    Российские металлурги усовершенствовали созданную ими методику почти полной переработки золы, позволяющую извлечь из отработанного топлива не только алюминий и другие полезные вещества, но и удалять из золы углерод.
    260
  • 06/11/2018

    Российские физики разработали новую микроволновую антенну

    ​Ученые из Университета ИТМО совместно с коллегами из Физического института имени П. Н. Лебедева РАН предложили новую микроволновую антенну, которая создает однородное магнитное поле в большом объеме и позволяет синхронизировать электронные спины группы дефектов в структуре наноалмаза.
    511
  • 20/07/2018

    Физики из России создали «лампочку» из оптоволокна, работающую в космосе

    ​Российские ученые создали прототип оптоволоконных источников света, способных работать в космосе и не разрушаться под действием радиации. "Инструкции" по их сборке были опубликованы в Journal of Lightwave Technology.
    479