​Красноярские ученые экспериментально продемонстрировали, что известный в оптике эффект Тальбота может проявляться для оптических вихрей в видимом диапазоне спектра. Полученные результаты представляют интерес для развития телекоммуникационных технологий, имиджинга и манипулирования микрообьектами. Результаты исследования опубликованы в журнале Scientific reports. 

Оптический вихрь – это свет, волновой фронт которого представляет собой винтовую поверхность, ось которой совпадает с направлением распространения света. Попадая на плоскую поверхность, оптический вихрь проявляется как световое кольцо с темным пятном в центре. Для характеристики вихря используется значение топологического заряда, зависящее от количества полных оборотов волнового фронта вокруг своей оси на одной длине волны. Чем выше заряд, тем быстрее «закручивается» свет, а направление закручивания определяется положительным или отрицательным знаком заряда. С момента своего открытия оптические вихри нашли широкое применение в телекоммуникации и оптических манипуляциях. 

Исследователи ФИЦ «Красноярский научный центр СО РАН» и Сибирского федерального университета теоретически и экспериментально изучили дифракцию оптических вихрей на двумерной решетке и впервые наблюдали связанный с этим эффект Тальбота для видимого света с различными топологическими зарядами. 

Эффект Тальбота – известный оптический феномен. Его суть заключается в том, что при прохождении света через периодическую решетку происходят последовательные дифракция и интерференция световых волн. В результате на определенных расстояниях за решеткой формируются распределения интенсивности света, напоминающие изображение решётки. 

Чтобы обнаружить этот эффект для видимого света ученые использовали прозрачную кварцевую пластину, покрытую непрозрачной серебряной пленкой. При этом в покрытии были перфорирован регулярный массив круглых отверстий. Непрозрачное для света покрытие с массивом отверстий представляло собой дифракционную решётку, необходимую для наблюдения эффекта Тальбота. 

Помимо самого эффекта, авторы работы также впервые для видимого света с различными топологическими зарядами получили так называемые ковры Тальбота. Они представляют собой фрактальный узор, созданный из проецируемых изображений. Такие узоры свидетельствуют о том, что интенсивность дифрагированного света, образуя оптические решетки, распределяется в них упорядоченно. Свет в таких решетках располагается симметрично и формирует периодическую пространственную структуру. 

Подробнее исследуя распределение интенсивности света, авторы работы смогли экспериментально воспроизвести элементарную ячейку трехмерной оптической решетки. Для этого физики направляли вихревые лазерные пучки на дифракционную решетку. Проходя через нее, лазерные пучки интерферировали друг с другом с образованием кольцеобразных структур. 

Андрей Вьюнышев, кандидат физико-математических наук,.jpg 

«Изучение вихревых лазерных пучков актуально для современной физики. Для нас было важно экспериментально обнаружить эффект Тальбота для вихревых пучков в видимом диапазоне спектра. Результаты наших расчетов хорошо согласуются с экспериментами и могут быть использованы для создания и оптимизации трехмерных решеток из лазерных пучков. Эффект Тальбота, например, может использоваться в фотолитографии для получения периодических субмикронных структур, размеры которых в несколько раз меньше размера структурных элементов исходной маски. Под действием импульса и орбитального углового момента света с помощью упорядоченных массивов оптических вихрей можно манипулировать микрообъектами в биологии, медицине и материаловедении. Наши результаты помогут глубже понять фундаментальные свойства материи и взаимодействие света с веществом», — рассказал о результатах работы кандидат физико-математических наук, заместитель директора по научной работе Института физики им. Л.В. Киренского СО РАН Андрей Вьюнышев. 

Работа была поддержана Российским научным фондом (проект № 19-12-00203).

Похожие новости

  • 02/11/2020

    Ученые предложили оптимальный способ создания металлорганических магнитов

    ​​​​​Международный коллектив специалистов предложил простой и эффективный подход к синтезу легких магнитов на основе хрома и органического соединения пиразина. Полученные металлоорганические магниты сохраняют свои свойства при температурах до 242°C и не размагничиваются достаточно мощным внешним магнитным полем при комнатной температуре.
    821
  • 09/02/2021

    В день российской науки красноярские ученые рассказали о важных итогах работы прошлого года

    В 1999 году был подписан указ Президента РФ о праздновании дня российской науки. Его отмечают 8-го февраля, в день создания Российской академии наук. Традиционно в этот день академические институты открывают свои двери для всех желающих, ученые рассказывают о результатах последних исследований.
    509
  • 04/08/2021

    Первый юбилей: Федеральному исследовательскому центру в Красноярске 5 лет

    ​​​1 августа исполнилось 5 лет с момента создания Федерального исследовательского центра «Красноярский научный центр СО РАН». При создании центра многие институты и подразделения испытывали опасения, связанные с созданием столь крупной организации.
    390
  • 03/11/2018

    Красноярские ученые разработали новый тип управляемых дифракционных решеток

    ​Дифракционные решетки играют центральную роль в интегральной оптике, голографии, оптической обработке данных. Ученые Института физики имени Л. В. Киренского Сибирского отделения Российской академии наук (ИФ СО РАН) и Института инженерной физики и радиоэлектроники Сибирского федерального университета (СФУ) разработали новый способ создания управляемой дифракционной решетки - оптической системы, действие которой основано на явлении световой дифракции (огибания препятствия светом), сообщила пресс-служба СФУ.
    1660
  • 04/12/2019

    Создана первая российская установка для синтеза тонких оксидных пленок

    ​Красноярские ученые создали установку для формирования прозрачных оксидных пленок с регулируемой толщиной. Благодаря особенностям конструкции, на ней можно быстрее и эффективнее, чем на большинстве зарубежных аналогов устройства, проводить синтез химических покрытий на неорганической основе.
    993
  • 21/04/2017

    Красноярские физики получили нанодисперсные порошки для создания аккумуляторов водорода

    Ученые Сибирского федерального университета и Института физики имени Л.В. Киренского СО РАН разработали технологию синтеза нанодисперсных порошков магния, которые могут стать перспективным материалом для изготовления аккумуляторов водорода для автомобильного транспорта.
    2780
  • 20/10/2017

    Красноярские ученые разработали технологию управляемого синтеза магнитных нанопорошков

     Ученые Института физики им. Л.В. Киренского Красноярского научного центра СО РАН (КНЦ СО РАН) научились синтезировать магнитные наночастицы с ядром из никеля и непроводящей ток углеродной оболочкой.
    1448
  • 13/04/2018

    Дилатометр измерит деформации космических материалов в вакууме

    Ученые из Института физики им. Л.В. Киренского Федерального исследовательского центра Красноярский научный центр СО РАН (ФИЦ КНЦ СО РАН) разработали измерительную ячейку для исследования свойств материалов при температурах близких к абсолютному нулю.
    1627
  • 13/05/2021

    «Макроскоп» для Земли: как ученые исследуют поверхность планеты из космоса

    ​​​Количество спутников на орбитах увеличивается с каждым месяцем. Благодаря сигналам, поступающим с космических аппаратов, можно легко связаться с человеком в любой точке земного шара, узнать свое местоположение или уточнить прогноз погоды.
    333
  • 08/04/2021

    Ученые Красноярского научного центра СО РАН расскажут школьникам про профессии будущего и первые шаги в науку

    Краевой фонд науки подвел итоги конкурса по организации проведения мероприятий по профессиональной ориентации молодежи. Два проекта ученых КНЦ СО РАН, нацеленных на привлечение школьников в науку, получили поддержку фонда.
    509