Ученые Сибирского федерального университета и Института физики имени Л.В. Киренского СО РАН разработали технологию синтеза нанодисперсных порошков магния, которые могут стать перспективным материалом для изготовления аккумуляторов водорода для автомобильного транспорта.

Водородное топливо скоро может заменить бензин, мазут и уголь.  На это рассчитывают экологи и над этим иронизируют нефтяники. Тем временем производители выпускают на дороги прототипы исключительно водородных автомобилей: абсолютно экологичных и при этом не намного дороже своих бензиновых собратьев. 

Но водород – газ очень опасный, взрывается! И сегодня ученые всего мира ломают головы над тем, как хранить и перевозить водород в объемах, достаточных для питания, например автомобиля. Стационарное долгосрочное хранение водорода – немногим сложнее хранения любого газа: его хранят под давлением в сжатом виде, в сжиженном виде, в баллонах,  цистернах. Предполагается, то водород можно хранить даже  в подземных соляных пещерах. Чтобы водород не взорвался, баллоны для его хранения делают очень прочными, применяют материалы, через которые газ не может просочиться наружу. Емкости получаются либо тяжелые и громоздкие, либо дорогостоящие. Производители автомобилей сегодня пошли по пути упрочнения и повышения надежности традиционных систем хранения (газовых баллонов): оболочки водородных баков автомобилей, работающих на водороде, сделаны из нескольких слоев сверхпрочных полимеров и углеродных материалов.  

Другой безопасный путь – использовать принципиально иные технологии, например, хранение водорода в химических соединениях. Водород в них находится в связанном виде, не может улетучиться сам по себе, но при этом достаточно просто извлекается. Гидриды – твердые нелетучие вещества (т.е. порошки), которые образуются от соединения некоторых металлов с водородом, — подходят для этих целей лучше всего. Принцип использования гидридов в качестве среды хранения водорода прост: под давлением металл захватывает водород, водород словно растворяется в металле, образуя новое химическое вещество, а при нагреве гидрида газ отдается обратно. Баллон с порошком гидрида металла, значительно менее опасен, чем повреждённая емкость с сжиженным водородом или охлажденный сосуд, где водород хранится под высоким давлением. 

Самый "вместительный" металл, который можно превратить в гидрид, – это палладий (в одном объеме палладия можно уместить 900 объемов водорода). Несмотря на то, что Россия является мировым лидером по добыче и производству палладия,  использование этого металла для превращения в промышленный водородный аккумулятор даже не рассматривается: металл очень тяжелый и чрезвычайно дорогой. 

 

Палладий / © Фото : Jurii 

За  много лет исследований ученые выяснили, что наиболее перспективный металл, который может практически использоваться для хранения водорода в гидриде,  - это  магний. У него небольшая плотность (в 4.5 раза легче железа и 1.5 раза легче алюминия), относительно низкая стоимость, и в теории он может связывать до 7,66% водорода в расчете на единицу массы.  Однако достигнуть предельного значения непросто, эту задачу и решают ученые многих стран мира. 

Группа ученых-физиков из Сибирского федерального университета и  Института физики им. Л.В. Киренского СО РАН, разработали технологию синтезирования  нанодисперсного порошка магния (т.е. с линейными размерами частиц в пределах 100 нм) и достигли растворения в нем чуть менее 7 весовых процентов водорода. Как отмечает один из авторов проведенной работы, профессор, доктор физико-математических наук, сотрудник Института физики имени Л.В. Киренского СО РАН и СФУ Григорий Чурилов, полученный результат — один из самых успешных в мире: сегодня экспериментальные показатели насыщения гидрида магния водородом составляют 5-6 весовых процента.  

Ученый добавляет, что сегодня в мире идет исследование возможности создания аккумуляторов водорода на основе гидрида магния, но растворить водород в металле по максимуму – мало. Необходимо сделать так, чтобы магниевый порошок мог бы использоваться в системе многократно. Кроме этого нужно снизить температуру отдачи водорода (гидрид магния отдает водород при температуре 360 градусов Цельсия), увеличить скорость протекания реакции насыщения магния водородом (это необходимо для того, чтобы полный бак безопасного водорода заправлялся 5 минут, а не полчаса). 

Полученный экспериментальный результат красноярских ученых приблизил нас к созданию действительно безопасного водородного двигателя.

Источники

Красноярские физики получили порошки для создания аккумуляторов водорода
Российское атомное сообщество (atomic-energy.ru), 21/04/2017
Красноярские физики получили порошки для создания аккумуляторов водорода
Profi-news.ru, 20/04/2017
Красноярские физики получили порошки для создания аккумуляторов водорода
РИА Новости, 20/04/2017
Россия стоит на пороге создания безопасного водородного двигателя
ПолитРоссия (politros.com), 21/04/2017
Россия стоит на пороге создания безопасного водородного двигателя
123ru.net, 21/04/2017
В России получили порошки для создания безопасного водородного двигателя
123ru.net, 21/04/2017
Россия стоит на пороге создания безопасного водородного двигателя
Око планеты (oko-planet.su), 22/04/2017
Для перспективных аккумуляторов водорода получили специальные порошки в Красноярске
Russian IT World (ritworld.com), 21/04/2017
Красноярские физики приблизили создание безопасного водородного двигателя
Байкал 24 # Наука (baikal24-nauka.ru), 04/05/2017
Ученые СФУ и Института физики имени Л.В. Киренского СО РАН создали технологию синтеза нанодисперсных порошков магния
Научная Россия (scientificrussia.ru), 04/05/2017
Ученые СФУ и Института физики имени Л.В. Киренского СО РАН создали технологию синтеза нанодисперсных порошков магния
Nanonewsnet.ru, 04/05/2017

Похожие новости

  • 29/04/2019

    Ученые установили, что сверхпроводники в форме пены можно использовать в космосе

    ​Международный коллектив ученых доказал, что большой образец сверхпроводящей пены имеет стабильное и сильное магнитное поле. В отличие от обычных сверхпроводников, пена является легким и прочным материалом с возможностью изготовления образцов большого размера.
    1477
  • 02/11/2020

    Ученые предложили оптимальный способ создания металлорганических магнитов

    ​​​​​Международный коллектив специалистов предложил простой и эффективный подход к синтезу легких магнитов на основе хрома и органического соединения пиразина. Полученные металлоорганические магниты сохраняют свои свойства при температурах до 242°C и не размагничиваются достаточно мощным внешним магнитным полем при комнатной температуре.
    821
  • 09/02/2021

    В день российской науки красноярские ученые рассказали о важных итогах работы прошлого года

    В 1999 году был подписан указ Президента РФ о праздновании дня российской науки. Его отмечают 8-го февраля, в день создания Российской академии наук. Традиционно в этот день академические институты открывают свои двери для всех желающих, ученые рассказывают о результатах последних исследований.
    510
  • 04/08/2021

    Первый юбилей: Федеральному исследовательскому центру в Красноярске 5 лет

    ​​​1 августа исполнилось 5 лет с момента создания Федерального исследовательского центра «Красноярский научный центр СО РАН». При создании центра многие институты и подразделения испытывали опасения, связанные с созданием столь крупной организации.
    391
  • 08/04/2021

    «Хочу разобраться, как все устроено»

    ​​Считается, что сегодня, в эпоху все более узкой специализации,  быть ученым-энциклопедистом невозможно. Однако молодой красноярский ученый Роман Морячков опровергает это досужее мнение. Спектр интересов младшего научного сотрудника института физики имени Л.
    372
  • 20/10/2017

    Красноярские ученые разработали технологию управляемого синтеза магнитных нанопорошков

     Ученые Института физики им. Л.В. Киренского Красноярского научного центра СО РАН (КНЦ СО РАН) научились синтезировать магнитные наночастицы с ядром из никеля и непроводящей ток углеродной оболочкой.
    1449
  • 03/11/2018

    Красноярские ученые разработали новый тип управляемых дифракционных решеток

    ​Дифракционные решетки играют центральную роль в интегральной оптике, голографии, оптической обработке данных. Ученые Института физики имени Л. В. Киренского Сибирского отделения Российской академии наук (ИФ СО РАН) и Института инженерной физики и радиоэлектроники Сибирского федерального университета (СФУ) разработали новый способ создания управляемой дифракционной решетки - оптической системы, действие которой основано на явлении световой дифракции (огибания препятствия светом), сообщила пресс-служба СФУ.
    1660
  • 04/12/2019

    Создана первая российская установка для синтеза тонких оксидных пленок

    ​Красноярские ученые создали установку для формирования прозрачных оксидных пленок с регулируемой толщиной. Благодаря особенностям конструкции, на ней можно быстрее и эффективнее, чем на большинстве зарубежных аналогов устройства, проводить синтез химических покрытий на неорганической основе.
    993
  • 13/04/2018

    Дилатометр измерит деформации космических материалов в вакууме

    Ученые из Института физики им. Л.В. Киренского Федерального исследовательского центра Красноярский научный центр СО РАН (ФИЦ КНЦ СО РАН) разработали измерительную ячейку для исследования свойств материалов при температурах близких к абсолютному нулю.
    1627
  • 10/07/2019

    Статья красноярских ученых вошла в число высокоцитируемых исследований в области физической химии

    ​Редакция журнала Physical Chemistry Chemical Physics высоко оценила статью красноярских ученых, выполненную совместно с зарубежными коллегами из Бельгии и Германии. Опубликованная в начале этого года работа, в которой рассматриваются вопросы перемешивания многокомпонентных смесей, попала в число «горячих» результатов — статей с наибольшим цитированием.
    929