Ни в одном из проверочных опытов в статье в Nature не определялся гелий и его изотопный состав — непосредственный продукт ядерного синтеза. Йошиаки Арата и Юи-Чанг Жанг (Arata Y. and Zhang Y.Ch., 1990−1999) в серии своих работ установили выход избыточного тепла 200−500 МДж/см3 и образование значительного количества гелия в дейтерированной палладиевой черни, помещенной в закрытую палладиевую ампулу, служившую катодом во время электрохимических экспериментов продолжительностью 5000 часов. Особо следует отметить, что отношение 3He/4He в продуктах опытов было на 4−5 порядков выше атмосферного.
Подобные эксперименты были воспроизведены в лаборатории Electric Power Research Institute в США (McKubre et al., 1992−2001). Было надежно подтверждено выделение избыточного тепла и его корреляция с выходом трития и гелия. Отношение 3He/4He в продуктах опытов было в 44 000 раз выше атмосферного! Все эти результаты однозначно свидетельствуют о том, что происходили ядерные реакции слияния атомов дейтерия с образованием гелия.
Как было показано Флейшманом и Понсом, а затем в Индийском атомном центре (P.К.Iyengar et al., 1990), образовавшийся в электрохимических опытах тритий постепенно накапливается в электролите, связываясь с тяжелой водой в виде щелочного основания. Непонятно, почему авторы статьи в Nature, получив большие средства, не использовали эти чувствительные и надежные методы идентификации продуктов ядерного синтеза.
В экспериментах по облучению палладиевой проволоки дейтериевой плазмой сохранить тритий в тонкой проволоке крайне трудно, так как он практически полностью улетучивается в газовую фазу. Это объясняет, почему авторы статьи в Nature не обнаружили тритий в cвоих экспериментах. Тритий может частично сохраняться в более толстых мишенях, что, по-видимому, имело место в опытах (T.N. Claytor at al.
Tritium production from a low voltage deuterium discharge on palladium and other metals. Low energy nuclear reactions conference, Monaco, 1995), которые авторы статьи безуспешно пытались воспроизвести. В то же время они наблюдали выход нейтронов, что является прямым свидетельством ядерных реакций, однако более подробных количественных данных не было приведено.
В опытах с порошком никеля в атмосфере водорода экспериментаторы, проводившие проверку, не указали размер частиц, состав элементов-примесей и даже температуру опытов. Все эти факторы имеют принципиальное значение для ядерной реакции и выхода тепла. Сконструированный ими калориметр был рассчитан для работы при температуре до 1200ºС, а реальная температура опытов, по-видимому, была ещё ниже.
При исследовании способа Андреа Росси, проведенном шестью независимыми экспертами (Levi et al, 2016), выделение избыточной энергии было заметно только при температуре выше 1200ºС, что объясняет отрицательный результат в статье в Nature. В аппарате Росси при 1400ºC выделяемая энергия уже более чем в три раза превышала затраченную. Очень важно, что в продуктах длительных опытов обнаружено изменение отношения изотопов никеля в десятки раз, что однозначно подтверждает ядерную природу выделяемой энергии. В опытах Александра Пархомова, проведенных по способу А. Росси, также зафиксировано выделение энергии, в 2−3 раза превышающее затраченную, и образование ряда элементов, отсутствовавших в исходном составе.
В наших экспериментах с тонкокристаллическим палладием под давлением газа дейтерия до 10 атмосфер при температурах до 600ºС измеренный выход избыточной энергии до 180 Ватт на 1 см3 дейтерида палладия сопровождался значительным (в несколько раз) изменением состава 15 элементов-примесей. Так, например, содержание серебра возросло до 200 раз, что вызвано реакцией высокоэнергичных продуктов ядерного синтеза: нейтронов и протонов с изотопами палладия. Образовался галлий, которого в исходном образце вообще не было. Рассчитанное суммарное выделение энергии за счет трансмутаций элементов-примесей составляет основную долю измеренного выхода избыточной энергии в опытах. Это объясняет отрицательные результаты экспериментов при использовании палладия высокой чистоты.
Достигнутые нами успехи по значительной интенсификации низкотемпературных ядерных реакций — результат предварительного компьютерного моделирования таких реакций в конденсированных средах, что позволило найти благоприятные условия для их осуществления. Ссылки на наши работы и патенты, в которых приведен также обзор многочисленных статей по ядерным реакциям при низких энергиях, можно найти в недавно опубликованной статье автора «
Ядерные реакции в конденсированных средах — основа новой энергетики». Стоит заметить, что все исследования, включая разработку и испытания дейтериевого теплогенератора, мы провели на собственные скудные средства. Они составляют менее 1% средств, потраченных авторами статьи в Nature на эксперименты, отсутствие положительных результатов в которых объясняется методическими ошибками, отличием условий от оригинальных работ и непониманием механизма ядерных реакций в конденсированных средах.
Приведенные выше и сотни других фактов не оставляют сомнения в том, что ядерные реакции можно осуществить в целом ряде физико-химических процессов при низких температурах. Если Google и научные фонды действительно заинтересованы в установлении научной истины, они могли бы выделить равные гранты сторонникам и противникам холодного ядерного синтеза для проведения экспериментов с точным их описанием. Желательно, чтобы Nature и другие авторитетные научные журналы предоставили страницы для опубликования результатов и свободной дискуссии, тогда независимые эксперты и читатели смогут сформировать своё собственное мнение о том, возможен ли холодный ядерный синтез и стоит ли его изучать.
Продолжение следует…
Автор: Виталий Киркинский.