Международный коллектив химиков из Китая, России и Японии синтезировал новое кристаллическое вещество на основе оксидов редкоземельных металлов, а также описал его структуру и свойства.

Расшифровка рентгенограммы нового соединение установила, что он относится к новому, ранее неизвестному классу. Также установлено, что соединение имеет свойства, делающие его пригодным для использования в электронной промышленности (например, в мониторах). Результаты исследования опубликованы в авторитетном британском научном журнале "Chemistry - A European Journal".

Коллектив исследователей из Университета Бохай (Китай), Северо-Восточного Университета в Шеньяне (Китай) и Национального Института Материаловедения (Япония), соединив нитраты редкоземельных элементов с сульфатами и гидратами аммония, синтезировал новое порошковое вещество, обладающее светимостью (способностью преобразовывать электрическую энергию в свет). Люминесцентность (светимость) широко распространена среди соединений редкоземельных элементов, и в этом не было бы ничего удивительного, но спектр нового соединения был совершенно уникальным, не похожим ни на один из известных или ожидаемых. Сопоставление рентгенограммы с базами данных показало, что соединение не принадлежит ни к одному из известных классов.

Для определения кристаллической структуры вещества (описания, из атомов каких химических элементов состоит кристалл и как именно атомы в этом кристалле расположены друг относительно друга) китайско-японский коллектив привлек российских коллег.

Сотрудник Сибирского федерального университета и Института физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН Максим Молокеев решил задачу, подтвердив, что соединение действительно относится к ранее неизвестному классу.

"Главная сложность была в том, что не удавалось получить монокристалл нового соединения, следовательно, невозможно было провести исследование стандартными для монокристаллов рентгеновскими способами определения структуры. Для порошков эта задача намного сложнее", - рассказал Максим Молокеев.

Расшифровав порошковую рентгенограмму, Максим Молокеев выяснил, что новый материал состоит из тетраэдров (четырехгранников) комплексных анионов оксида серы (SO₄2−) и ионов редкоземельных элементов, окруженных атомами кислорода. Четырехгранники оксида серы не упорядочены.

Самым удивительным свойством нового соединения оказалось то, что при нагреве до 800℃ происходит экологически чистый синтез люминофоров, пригодных для использования в электронной промышленности (производстве светоизлучающих приборов, например, мониторов). Примечательно, что при синтезе выделяется исключительно обычная вода, в то время как при получении других подобных люминофоров обычно выделяются токсичные побочные продукты.

Источники

Химики создали новый класс люминофоров для электронной промышленности
Profi-news.ru, 14/12/2017
Химики создали новый класс люминофоров для электронной промышленности
Новости@Rambler.ru, 14/12/2017
Химики создали новый класс люминофоров для электронной промышленности
РИА Новости, 14/12/2017
Сибирский ученый описал свойства вещества для экологически чистого производства экранов
Новости@Rambler.ru, 14/12/2017
Сибирский ученый описал свойства вещества для экологически чистого производства экранов
ТАСС, 14/12/2017
Новый люминофор удешевит светодиоды
Wi-Fi.ru Санкт-Петербург (spb.wi-fi.ru), 15/12/2017
Новый люминофор удешевит светодиоды
Wi-fi.ru, 15/12/2017
Новый люминофор удешевит светодиоды
Новости@Rambler.ru, 15/12/2017
Новый люминофор удешевит светодиоды
Индикатор (indicator.ru), 15/12/2017
Международный коллектив химиков с участием ученых из РФ создал новый класс люминофоров
Научная Россия (scientificrussia.ru), 26/12/2017
Химики создали новый класс люминофоров для электронной промышленности
Nanonewsnet.ru, 26/12/2017

Похожие новости

  • 23/01/2019

    Новосибирские физики смоделировали атмосферу экзопланет

    ​Сотрудники Института лазерной физики СО РАН в лабораторных условиях моделируют плазменный ветер, аналогичный тому, что испускают объекты в сотнях световых лет от Земли. Эти исследования имеют большое значение для изучения состава и динамики верхней атмосферы разных классов экзопланет, в том числе потенциально пригодных для жизни.
    503
  • 16/01/2019

    Физики изучили влияние взаимодействия между магнитными наночастицами на магнитный гистерезис

    Команда исследователей из Сибирского федерального университета, Института физики имени Л. В. Киренского  СО РАН и Сибирского университета науки и технологий изучила магнитный гистерезис в наногранулированных композитах.
    584
  • 14/06/2018

    Наночастицы нитрида титана повысят производительность оптоволоконных линий связи

    Ученые Федерального исследовательского центра Красноярский научный центр СО РАН (ФИЦ КНЦ СО РАН) совместно с коллегами из Сибирского федерального университета, Сибирского государственного университета науки и технологий им.
    636
  • 01/11/2017

    Сибирские ученые изучили новый тип нанопластин для применения в медицине

    ​Ученые из Института физики имени Л. В. Киренского Красноярского федерального исследовательского центра Сибирского отделения РАН совместно с коллегами из Сибирского федерального университета впервые изучили магнитные свойства, структуру и состав новых наночастиц семейства халькогенидов (элементов 16-й группы периодической системы, к которым относятся кислород, сера, селен, теллур, полоний и ливерморий).
    941
  • 13/04/2018

    Дилатометр измерит деформации космических материалов в вакууме

    Ученые из Института физики им. Л.В. Киренского Федерального исследовательского центра Красноярский научный центр СО РАН (ФИЦ КНЦ СО РАН) разработали измерительную ячейку для исследования свойств материалов при температурах близких к абсолютному нулю.
    461
  • 16/10/2017

    Пассажиров аэропорта Дели проверяет техника, разработанная учеными ИЯФ СО РАН

    Система рентгенографических сканеров Express Inspection, совместной разработкой которых занимался Новосибирский Институт ядерной физики им Г. И. Будкера СО РАН и Орловский завод «Научприбор», проходит апробацию в Индии.
    764
  • 30/11/2018

    Энергоэкономные технологии для науки и промышленности

    ​В Институте физики им. Л. В. Киренского (ФИЦ КНЦ) СО РАН учёные разработали энергосберегающую технологию получения разнообразных редких кристаллов. Многие полезные для промышленности и научных исследований кристаллы растут из оксидов, которые плавятся при очень высоких температурах (в природе - путём кристаллизации в расплавленной магме).
    402
  • 12/10/2016

    Томские ученые испытывают новые стекла для космических спутников

    ​Сотрудники НИИ ПММ ТГУ проводят испытания покрытий, созданных для защиты иллюминаторов, линз и зеркал космических аппаратов от эрозии. При помощи легкогазовой баллистической установки экспериментальные образцы обстреливают микрочастицами порошка железа со скоростью 5-8 километров в секунду.
    1756
  • 17/09/2018

    Большой адронный коллайдер и фундаментальные вопросы науки

    Россия пока не получила ни одного заказа при модернизации Большого адронного коллайдера, хотя раньше без нее ЦЕРН обойтись в принципе не мог. Ровно десять лет назад в Европейской лаборатории ядерных исследований (ЦЕРН) был запущен Большой адронный коллайдер.
    584
  • 30/08/2018

    Новосибирские ученые знают, как разбить древность на атомы

    Озера, древние книги, иконы, кости мамонтовой фауны или доисторического человека, деревянные колоды из погребений и даже болотный торф - все эти объекты можно точно датировать, определить время их создания, появления на свет или, если речь идет о живом существе, период обитания на Земле.
    388