Химики из России выяснили, как формируются нестабильные кристаллы метановых гидратов – "замороженной" разновидности природного газа, вызывающей взрывы на дне морей Арктики. Их выводы были представлены в Journal of Natural Gas Science and Engineering. 

На дне Северного Ледовитого океана, в приповерхностных слоях грунта, залегают гигантские запасы так называемых метановых гидратов – спрессованных и замороженных соединений воды и метана, остающихся стабильными при низких температурах и высоких давлениях.

Сегодня ученые опасаются, что дальнейшее повышение температур вод мирового океана приведет к массовому таянию этих гидратов и попаданию гигантских количеств метана в атмосферу. Подобные события, как недавно выяснили океанологи, уже происходили недавно на дне Баренцева моря.

С другой стороны, эти же запасы газа представляют сегодня один из самых больших и при этом нетронутых запасов ископаемых углеводородов. Их добыче мешает та же самая проблема – пока не понятно, как можно безопасно и дешево извлекать их из вечной мерзлоты. Вдобавок, гидраты могут образоваться внутри "северной" нефти, что также делает ее опасной и дорогой для добычи.

Как передает пресс-служба Российского научного фонда, Андрей Стопорев из Института неорганической химии СО РАН в Новосибирске и его коллеги открыли необычную нестабильную форму кристаллов из "замороженного" метана, наблюдая за тем, как менялись свойства нефти при ее охлаждении до сверхнизких температур.

Как отмечает Стопорев, раньше ученые изучали и просчитывали поведение только самых простых форм метановых гидратов, возникающих в "чистой" смеси из газа и воды. С другой стороны, в реальном мире чистый газ встречается крайне редко – обычно его сопровождают нефть и другие типы ископаемых углеводородов.

Российских химиков заинтересовало то, как подобное соседство будет влиять на свойства "замороженного" метана и процесс его формирования. Для этого они подготовили специальную смесь из газа и нефти и резко заморозили ее, погрузив в жидкий азот.

Этот прием, как обнаружили исследователи из Новосибирска, Томска и Москвы, привел к формированию совершенно новой формы гидрата, о существовании которой ученые раньше подозревали, но не могли доказать, что он может возникать в смеси нефти, воды и газа.

В отличие от классических газовых гидратов, чьи кристаллы остаются стабильными при относительно низких давлениях и высоких температурах, эта форма "замороженного метана" оказалась крайне нестабильной. Она, как показали последующие наблюдения, постепенно превращается в стабильную версию "углеводородного льда".

Это открытие, по словам Стопорева и его коллег, указывает на то, что классические формы метановых гидратов могут формироваться не напрямую из воды и газа, а в результате медленного распада нестабильного "замороженного метана".

Это важно не только для прогнозирования того, что ожидает дно Арктики в ближайшие десятилетия, но и для защиты сибирских нефтяных месторождений и нефтепроводов от образования "пробок" из подобных льдов внутри них, используя вещества, препятствующие формированию нестабильных гидратов.


Источники

Химики из России раскрыли тайну рождения арктического "метана-убийцы"
Pro-arctic.ru, 29/12/2018
Химики из России раскрыли тайну рождения арктического "метана-убийцы"
Margust (gazeta-margust.ru), 29/12/2018
Химики из России раскрыли тайну рождения арктического метана-убийцы - новости на сегодня 29.12.2018
News2world.net, 29/12/2018
Химики из России раскрыли тайну рождения арктического "метана-убийцы"
Новосибирские новости (nscn.ru), 29/12/2018
Химики из России раскрыли тайну рождения арктического "метана-убийцы"
Profi-news.ru, 29/12/2018
Химики из России раскрыли тайну рождения арктического "метана-убийцы"
Новости@Rambler.ru, 29/12/2018
Химики из России раскрыли тайну рождения арктического "метана-убийцы"
РИА Новости, 29/12/2018
Химики объяснили тайну происхождения газа, способного взорвать дно арктических морей
The world news (theworldnews.net), 30/12/2018
Химики объяснили тайну происхождения газа, способного взорвать дно арктических морей
Суть событий (argumentiru.com), 30/12/2018
Химики объяснили тайну происхождения газа, способного взорвать дно арктических морей
Mirtesen.sputnik.ru, 30/12/2018

Похожие новости

  • 03/01/2019

    Обнаружены особенности образования соединений, мешающих добыче нефти и газа

    ​​Ученые из Института неорганической химии имени А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН) исследовали реакцию образования кристаллических соединений воды и газа (газовых гидратов) с метастабильной (неустойчивой) структурой.
    325
  • 07/08/2018

    Магистранты ТПУ примут участие в работе над уникальными проектами

    ​Магистрантам Томского политехнического университета предлагают стать участниками уникальных исследовательских проектов в составе научных групп под руководством ведущих ученых вуза. Одной из таких научно-исследовательских групп является коллектив научно-образовательного центра Н.
    347
  • 05/12/2018

    Новосибирские ученые – победители конкурса на соискание Премии имени Стручкова

    ​Подведены итоги конкурса молодых ученых на Премию Ю.Т. Стручкова 2018 года. Решением жюри лауреатом Премии Ю.Т. Стручкова 2018 года (200 тыс. руб.) объявляется Абрамов Павел Александрович за работу "Роль РСА в изучении процессов самоорганизации систем на основе полиоксометаллатов"; Институт неорганической химии им.
    606
  • 21/12/2017

    Регионы Сибири объединились для реализации арктических проектов

    Решить глобальную задачу освоения арктической зоны России невозможно без объединения всех заинтересованных сторон и эффективного взаимодействия сибирских территорий. Арктические проекты дадут импульс развитию территорий и привлекут высококлассных специалистов.
    845
  • 03/03/2017

    Ученые выявили свойства наностенок, которым найдут применение в нефтегазовой отрасли

    ​Ученые из Института неорганической химии (ИНХ) СО РАН и Санкт-Петербургского государственного университета (СПбГУ) исследовали свойства принципиально новых наноструктур - наностенок и выяснили, что они могут выдержать очень высокие температуры, а также способны излучать ультрафиолет и отталкивать воду.
    974
  • 20/03/2017

    Институт катализа СО РАН и Лицей № 130 откроют совместную химическую лабораторию

    Институт катализа им. Г.К. Борескова СО РАН и Лицей № 130 имени академика М.А. Лаврентьева откроют совместную химическую лабораторию. Учащиеся смогут со школьной скамьи получить опыт работы в настоящей лаборатории под руководством научных сотрудников, решая реальные исследовательские задачи.
    1931
  • 30/12/2016

    Институт химии нефти СО РАН готов адаптировать свои технологии для Арктики

    ​Институт химии нефти (ИХН) СО РАН в Томске, который занимается разработкой технологий добычи "трудной" нефти, может адаптировать их для работы в условиях Арктики. Потенциальные запасы российской Арктики оцениваются в 100 млрд ТНЭ (тонн в нефтяном эквиваленте), или 25 % мировых ресурсов.
    1471
  • 13/06/2017

    Лауреаты премии имени академика В.А. Коптюга 2017 года

    Премия имени выдающегося ученого академика Валентина Афанасьевича Коптюга, вице-президента Российской академии наук, председателя Сибирского отделения РАН, иностранного члена Национальной академией наук Беларуси учреждена с целью поощрения исследователей Республики Беларусь и Российской Федерации за достижение выдающихся результатов при выполнении совместных научных исследований в рамках межгосударственных программ, а также за совместные научные труды, научные открытия и изобретения, имеющие важное значение для науки и практики.
    1382
  • 05/10/2016

    Новосибирские учёные «вырастили» органические светоизлучающие полупроводники

    ​Группа учёных из Новосибирского государственного университета, Новосибирского института органической химии (НИОХ), МГУ и Университета Гронингена (Нидерланды) опубликовала результаты мультидисциплинарного исследования в сфере органической электроники.
    1841
  • 17/08/2017

    В новосибирском Академгородке прошла конференция «Графен: Молекула и 2D-кристалл»

    В Новосибирском государственном университете завершилась вторая российская конференция "Графен: Молекула и 2D-кристалл". Ее участниками стали 110 специалистов из России (Москвы, Новосибирска, Санкт-Петербурга, Черноголовки, Дубны, Якутска, Омска, Томск, Кемерово, Красноярска, Екатеринбурга, Улан-Удэ, Уфы, Челябинска), США, Беларуси, Испании, Германии и Великобритании.
    1356