В Новосибирске планируют построить мюмютрон - маленький коллайдер, а потом масштабную установку для изучения фундаментальных свойств материи, "Супер чарм-тау фабрику", и наблюдать эффекты Новой физики - принципиально новые феномены, которые никак не проявляются в доступном нам мире. Об этом проекте и его текущем состоянии - в материале РИА Новости.

У теоретиков накопилось достаточно вопросов к Стандартной модели, которая описывает Вселенную на фундаментальном уровне. Ответов пока нет. Хотя главная физическая теория прекрасно подтверждается экспериментами на всех имеющихся в распоряжении физиков установках.

"Обнаружение бозона Хиггса, предсказанного еще в середине прошлого века, показало, что природа устроена просто и красиво. Выйти за пределы Стандартной модели не получается. Большой адронный коллайдер поднял энергию до своих максимальных возможностей, а проявлений Новой физики все нет", - говорит РИА Новости академик Павел Логачев, директор Института ядерной физики (ИЯФ) Сибирского отделения РАН в Новосибирске.

Ученых беспокоит, почему суперсимметрия - физическая гипотеза, предполагающая существование суперпартнеров у всех известных элементарных частиц, никак не наблюдается даже на БАК. Другой вопрос касается тайны происхождения электронов и кварков. Дело в том, что существует три поколения этих частиц с массами, различающимися на несколько порядков. К примеру, в состав протонов и нейтронов входят только два кварка первого поколения. Зачем природа создала еще четыре кварка? Чем объясняются их свойства?

Аналогичная ситуация с электроном - легкой частицей в составе атомов. Ее "кузен" в третьем поколении - тау-лептон - почти в четыре тысячи раз тяжелее. Ученых интересует, может ли он превратиться в электрон напрямую, без участия тау-нейтрино - самого тяжелого типа нейтрино. Зачем вообще утраивать поколения элементарных частиц?


"Таких вопросов к Стандартной модели очень много", - констатирует академик Логачев.

Ученым хочется, чтобы была одна, простая и красивая теория, которая объяснит все и даже больше - сможет предсказывать, что там, в недоступных нам областях космоса, занятых темными материей и энергией.

"Сейчас ситуация напоминает конец XIX - начало XX века, когда были созданы квантовая механика, теория относительности, релятивистская теория гравитации, изучена структура атомов и атомных ядер. Поэтому, надеюсь, выход в Новую физику состоится очень скоро. И кто первый это сделает, кто окажется на гребне событий, тот снимет все сливки", - рассуждает директор.

Ускоритель превращается в фабрику

Изучение физики тяжелых кварков и поиск Новой физики возможны не только при очень высоких энергиях, но и на ускорителях низких и средних энергий, увеличивающих в сотни раз число редчайших событий, в которых рождаются кварки. В результате удается собрать больше статистики за меньшее время и тем самым резко увеличить вероятность обнаружения новых явлений.
Такие установки называют суперфабриками. Они в сотни раз производительнее обычных ускорителей. Физики из Новосибирска решили пойти именно этим путем, чтобы изучить природу тау-лептона, самого тяжелого из известных собратьев, и очарованного кварка (чарм-кварка, или c-кварка), представителя второго поколения кварков.

"Мы хотим подобраться к Новой физике через другую дверь, пытаясь выявить невероятно редкие события, которые считаются в Стандартной модели строго запрещенными. Для этого нужны на порядки более высокая производительность - мы называем это светимостью, - чистота эксперимента, его точность. Все это достижимо на средних энергиях", - поясняет академик Логачев.

Меню "Супер чарм-тау фабрики"

Установка, которую предлагают построить в ИЯФ, "Супер чарм-тау фабрика", - это коллайдер, где сталкиваются электроны и позитроны. Чтобы обеспечить его этими частицами, - а их потребуется десятки миллиардов ежесекундно, - нужны довольно сложный комплекс из линейных ускорителей и другие уникальные приборы, например, источник поляризованных электронов.

Позитроны - антиподы электронов - фабрике дает целый каскад ускорителей. Первый стреляет пучком электронов в танталовую мишень, рождающую смесь частиц, в том числе позитроны. Их собирают специальным устройством, направляют в следующий ускоритель, чтобы разогнать до нужных энергий, а затем - в кольцо-накопитель. Охлажденный там сгусток позитронов, накопленных за много выстрелов ускорителя, передают в основной линейный ускоритель, а оттуда - в коллайдер-фабрику, где в столкновениях электронов и позитронов рождаются очарованные кварки и тау-лептоны. И их фиксирует детектор.

Столкновение и исчезновение частиц в фабрике происходит с огромной частотой, поэтому ускорительному комплексу придется работать непрерывно.

В поисках димюония

Идея резкого увеличения светимости электрон-позитронного ускорителя на встречных пучках - метод crab waist - принадлежит итальянскому физику Панталео Раймонди. Вместе с новосибирцами он смоделировал все нюансы процесса, а затем проверил на ускорителе DAFNE в Италии, сумев поднять светимость в три раза. Но увеличение этого параметра на два порядка требует особой подготовки. Для этого в ИЯФ планируют построить испытательный стенд в виде небольшого коллайдера размером всего тридцать метров - мюмютрон. В нем на очень низких энергиях, но с большими токами будут сталкиваться пучки электронов и позитронов.

В дальнейшем стенд можно использовать для изучения мюона - нестабильной элементарной частицы, которую регистрируют в космических лучах. Попробуют также получить димюоний - экзотический атом, состоящий из отрицательного и положительного мюонов. Отсюда и название коллайдера.

"Димюоний в двести раз меньше позитрония - системы из электрона и позитрона. Большое количество димюония - еще одна возможность для поиска эффектов Новой физики. Димюоний предсказан теоретически, но никто в мире его еще не получал экспериментально", - продолжает директор ИЯФ.

Проект, который ждут

"Супер чарм-тау фабрика" заполнит пустующую в мире нишу установок среднего уровня энергий и высокой производительности. Проект горячо поддерживает международное сообщество: его реализация позволит проверить и уточнить данные, полученные в других экспериментах.

На БАК тоже можно изучать c-кварки. Однако там происходит очень много других событий, поскольку энергия гораздо выше. Чарм-кварками эффективнее заниматься при более низких энергиях, на которые и ориентированы новосибирцы.

В японской лаборатории КЕК кварки изучают на "Супер b-фабрике" с очень высокой светимостью. Но понизить энергию ускорителей, чтобы наблюдать прямое рождение очарованных кварков, на этой установке нельзя, поскольку все оптимизировано для других экспериментов.

Сегодня один из самых успешных в этой области - электрон-позитронный коллайдер BEPC II в лаборатории IHEP в Китае. Однако у него маленькая производительность. Использовать там идею Раймонди невозможно: он высказал ее в 2006 году, когда китайцы уже строили свою чарм-фабрику. Так что проект в Новосибирске уникален не только собственным колоссальным потенциалом, но и тем, что дает возможность проверить результаты других установок. Особенно это касается Новой физики. Здесь без дублирования не обойтись: если в одном эксперименте зафиксирован необычный эффект, его необходимо повторить в другом, независимом эксперименте.

Слово за правительством

"Супер чарм-тау фабрику" одобрили в 2011 году вместе с еще пятью megascience-проектами. Два из них уже получили финансирование и реализуются: исследовательский реактор на быстрых нейтронах ПИК под Санкт-Петербургом и коллайдер протонов и тяжелых ионов NICA в Дубне.

Называть даже предварительные сроки запуска строительства "Супер чарм-тау фабрики" пока преждевременно. По словам академика Логачева, сначала правительство проработает поручение о создании комплекса синхротронных источников четвертого поколения (ИССИ-4), данное Владимиром Путиным в апреле этого года по итогам заседания Совета по науке и образованию. Это тоже один из проектов класса megascience. Строить синхротроны планируют в Новосибирске и Протвино - двух крупнейших ускорительных центрах страны. Решение, по словам директора, ожидается в конце года.

Ускорительная техника - область, где российская наука находится на мировом уровне. Иначе у наших физиков не было бы компетенций для разработки ИССИ-4. Развитие ускорительной техники подтягивает за собой и другие отрасли промышленности, а также служит коммерциализации технологий.

"Без коллайдеров не было бы первого в мире ускорительного источника для бор-нейтронозахватной терапии рака. И пока мы сохраняем лидерство. Мы делаем малодозные рентгеновские установки для систем безопасности в аэропортах. Они обеспечивают абсолютную надежность досмотра при эквивалентной дозе, получаемой пассажиром всего за пять минут полета. С "Супер чарм-тау фабрикой" мы сможем снизить и эту дозу. Если бы мы не занимались коллайдерами, то не сделали бы для нашей оборонной отрасли пушки для электронно-лучевой сварки. Раньше их производила Украина, а теперь мы. Коммерческий выход от проекта намного превысит затраты на него", - заключает академик Логачев.

Татьяна Пичугина

Источники

"Там кипеж такой стоит". Из Новосибирска прорубят окно в новую физику
Новости@Mail.ru, 26/06/2018
"Там кипеж такой стоит". Из Новосибирска прорубят окно в новую физику
Санкт-Петербургские новости (npit.ru), 26/06/2018
"Там кипеж такой стоит". Из Новосибирска прорубят окно в новую физику
Newsmir.info, 26/06/2018
"Там кипеж такой стоит". Из Новосибирска прорубят окно в новую физику
РИА Новости, 26/06/2018
Синхротронный коллайдер готовы строить в Академгородке
Все новости Новосибирской области (vn.ru), 26/06/2018
Академгородок - один из главных центров изучения синхротронного излучения в России
Академгородок (academcity.org), 26/06/2018
Там кипеж такой стоит . Из Новосибирска прорубят окно в новую физику - новости на сегодня 26.06.2018
News2world.net, 26/06/2018
Павел Логачев: "Источник СИ будет центром, который объединит разные научные направления"
Российская академия наук (ras.ru), 26/06/2018
"Там кипеж такой стоит". Из Новосибирска прорубят окно в новую физику
Империя (imperiyanews.ru), 26/06/2018
Из Новосибирска прорубят окно в новую физику
Земля. Хроники жизни (earth-chronicles.ru), 26/06/2018
"Там кипеж такой стоит". Из Новосибирска прорубят окно в новую физику
Мировое обозрение (tehnowar.ru), 26/06/2018
"Там кипеж такой стоит". Из Новосибирска прорубят окно в новую физику
Русский переплет (pereplet.ru), 26/06/2018
Синхротронный коллайдер готовы строить в Академгородке
Новости Новосибирска (novosibirsk-news.net), 27/06/2018

Похожие новости

  • 06/04/2017

    Германия выделит новосибирским ученым-ядерщикам 30 миллионов евро на совместные научные разработки

    Один из примеров сотрудничества - проект рентгеновского лазера, успешно развивающийся  в Гамбурге. Это оборудование, которое сможет помочь изучить структуру любого вещества одним пучком света, было изготовлено в столице Сибири.
    1210
  • 26/05/2017

    ИЯФ СО РАН: адронная терапия для борьбы с опухолью

    Адронная терапия - облучение опухоли пучками протонов или тяжелых ионов - несмотря на долгую историю, остается одним из самых многообещающих направлений ядерной медицины. Адронная терапия требует точного расчета, а также большой гибкости и вариативности.
    1028
  • 04/01/2017

    Российские физики объединятся для создания в Сибири суперколлайдера

    Физики российских НИИ, которые сейчас участвуют в создании коллайдера NICA в подмосковной Дубне, планируют объединиться для реализации перспективного проекта в Институте ядерной физики (ИЯФ, Новосибирск), сообщил РИА Новости замдиректора сибирского института Евгений Левичев.
    873
  • 27/02/2018

    В Новосибирске выбирают место для строительства самого мощного в мире синхротрона

    ​Сибирские ученые раскрыли основные параметры и предназначение установки, создание которой одобрено Владимиром Путиным. В ходе посещения новосибирского Академгородка президент РФ поддержал предложение сибирских ученых о строительстве нового источника синхротронного излучения (СИ).
    652
  • 07/03/2016

    В ИЯФ СО РАН разработали ключевые компоненты нового коллайдера

    ​ ​В Институте ядерной физики им. Г.И. Будкера СО РАН созданы вакуумные камеры, корректирующие магниты, электроника регистрации и программное обеспечение для установки SuperKEKB, которая монтируется в японской Лаборатории физики высоких энергий (КЕК) в Цукубе.
    2042
  • 29/05/2018

    Физики разных стран мира помогут создавать Супер С-тау фабрику в Новосибирске

    ​В Институте ядерной физики им. Г. И. Будкера СО РАН прошло первое совещание Международного совета Супер С-тау фабрики, в котором приняли участие исследователи из России и зарубежных стран. "То, что происходит сегодня, - для нас важный этап, который подтверждает: мы находимся на правильном пути развития", - прокомментировал директор ИЯФ СО РАН академик Павел Владимирович Логачев.
    274
  • 04/05/2017

    Новосибирские физики увеличили производительность адронного коллайдера

    ​Российские ученые разработали, изготовили и ввели в эксплуатацию важные элементы установки, которая позволит значительно увеличить производительность Большого адронного коллайдера, сообщил журналистам директор Института ядерной физики (ИЯФ СО РАН) Павел Логачев.
    1058
  • 02/03/2017

    Крупнейшие мегапроекты России реализуют в течение ближайших пяти лет

    ​В Новосибирском Академгородке ученые со всего мира обсудили развитие глобальных проектов: модернизация Большого адронного коллайдера, создание ускорительного комплекса для столкновения тяжелых ионов NICA в Дубне и Супер Чарм-Тау фабрики в Новосибирске, а также усовершенствование возможностей электрон-позитронных коллайдеров в Сибири.
    2194
  • 09/06/2018

    ИЯФ СО РАН предоставит площадку для лечения

    ​Институт ядерной физики им. Г.И. Будкера СО РАН готов предоставить на своей территории площадку для лечения методом бор-нейтронозахватной терапии онкобольных, которым не помогают другие методы. Это должно быть временным решением до появления специализированной клиники, проект которой разрабатывается в Новосибирском государственном университете.
    601
  • 05/09/2018

    Новосибирские физики в борьбе за «полезный» атом

    ​Мы уже обращали внимание на одно парадоксальное обстоятельство. Россия - одна из немногих стран, занимающих ведущие позиции в области ядерной физики. Здесь работают признанные во всем мире специалисты-ядерщики.
    174