​За последние пятнадцать лет исследователям удалось секвенировать геномы тысяч вирусов и сотен животных и растений. Самое поразительное в этих открытиях — потрясающее разнообразие наследственного материала, который содержится в клетках организмов. Какие данные о животных пролили свет на происхождение человека и что нового можно узнать, сравнивая между собой геномы разных видов? 

На эти и другие вопросы ответил  на открытой лекции в научном кафе «Эврика!» кандидат биологических наук, заведующий лабораторией сравнительной геномики Института молекулярной и клеточной биологии СО РАН, доцент Новосибирского государственного университета Владимир Александрович Трифонов.
Владимир Трифонов 
— Мы в институте занимаемся поиском и изучением новой информации о геномах живых существ, конечно же, наши исследования идут в рамках общей парадигмы эволюционного дарвинизма и его продолжения — Синтетической теории эволюции, — начал своё выступление Трифонов. — Геном — это определённая инструкция, записанная в виде последовательностей нуклеотидов, о том, как построить все клетки, ткани и органы единого организма и как им в целом управлять. 
 
В этом направлении науки исследователи постоянно находят неожиданные и удивительные факты. Например, у человека в одной клетке содержится около двух метров ДНК (три миллиарда нуклеотидных остатков). У животных геномы по размеру разные. Из позвоночных самый крупный — у двоякодышащих рыб (40 миллиардов пар нуклеотидов). А у амёбы Polychaos dubium — в 200 раз больше, чем у человека. Зачем таким простым и крошечным существам, как амеба, столь огромные совокупности наследственной информации? Пока загадка. 
 
— Поражает отсутствие корреляции между размером генома и сложностью организма: особи могут быть похожими, одинаково себя вести, но при этом у них могут отличаться геномы по размеру в два раза. Почему так — до конца не ясно, — добавляет Трифонов. 
 

— Вообще само по себе секвенирование — ещё далеко не финал, а скорее, самое начало исследования генома. В некоторых случаях понять полученные данные поможет только полная сборка (процесс объединения большого количества коротких фрагментов ДНК в одну или несколько длинных последовательностей) и аннотация (описание структурных и функциональных характеристик участков генома). 

В качестве примера для понимания сложности  расшифровки геномов с повторяющимися последовательностями учёный процитировал стихотворение Александра Шибаева:  

— Зверёк-зверёк, куда бежишь?

Как звать тебя малышка?

— Бегу в КАМЫШ-КАМЫШ-КАМЫШ,

Я — МЫШКА-МЫШКА-МЫШКА.    

 
На таком примере можно посмотреть различие работы с эукариотами (ядерными) и прокариотами (одноклеточными, не обладающими ядром): «Дело в том, что у эукариот огромное количество повторяющихся, избыточных последовательностей. Так же, как в стихотворении, дублирование слов (участков) необходимо, если хотим подчеркнуть экспрессию и выразить какие-то эмоции. Приблизительно то же самое происходит в геномах: у ядерных (к которым мы с вами тоже относимся) много повторённых последовательностей. Большая часть нашего генома — это многократно копированные участки, добавляющие нашему геному не только сложность, но и некоторые особые возможности», — говорит Трифонов. 
 
Если бы прокариоты решили написать в своих геномах такое стихотворение, у них, по мнению исследователя, всё было бы проще: «Зверь, куда бежишь? Как тебя звать? — Я мышь, бегу в камыш».
 
— Здесь чётко и понятно. А эукариоты же применяют «фантазию», чтобы сделать «речь» (то есть свой геном) более яркой и необычной.  Владимир Трифонов в своей лекции привёл несколько необычных фактов, доказывающих что геномы — вещь довольно увлекательная.
 
Человек 
Первый геном среди сложных многоклеточных организмов был отсеквенирован именно у человека в 2001 году. В настоящий момент полученные в то время данные используются исследователями как точка отсчета для изучения строения геномов других организмов. Международный консорциум учёных создал «Проект 1000 геномов», который поставил своей задачей глубокое и полное исследование полиморфизма (многообразия) ДНК человека в различных популяциях. 
 
Исследователи выяснили: Y-хромосома млекопитающих произошла всего 180 миллионов лет назад. Эта новорожденная хромосома у предка была почти точно такая же, как X, а впоследствии начала быстро дегенерировать, терять гены. Австралийская учёная Дженни Грейвс сделала вывод, что при такой скорости вырождения у людей и у других млекопитающих где-то через 5 миллионов лет Y-хромосома может исчезнуть. 
 
— В научном сообществе было много разных конфликтов по этому поводу, — рассказал Трифонов. — Я присутствовал однажды на выступлении Грейвс и видел: во время её доклада люди сидели с выражением лица, будто они смотрят фильм Ларса фон Триера. Многие даже не могли дослушать до конца — и выбегали побледневшими из зала! 
 
Но дальнейшие изыскания биологов на других видах показали, что Y-хромосома после достижения определенной степени дегенерации просто «замедлила» свои процессы. Значит, сильный пол в ближайшие миллионы лет может не беспокоиться. 
 
Приматы 
Шимпанзе — наш «ближайший родственник». Каждый белок человека и шимпанзе отличается примерно на две аминокислоты. С гориллой геномы тоже разнятся не сильно, ведь эта линия приматов выделилась всего 10 миллионов лет назад. 
 
Орангутаны — также очень близки людям  по гомологии ДНК. При исследовании этих человекообразных обезьян учёные обнаружили, что у них крайне медленная эволюция, и попытались найти ответ на вопрос, почему они чрезвычайно эргономичны — почти как ленивцы. 
 
— Быстро прыгая по веткам, орангутаны расходуют намного меньше энергии, чем человек, сидящий на диване, — отмечает Владимир Трифонов. — Вообще человекообразные обезьяны изначально обладали большим видовым разнообразием. Но оно постепенно стало уменьшаться. Скорее всего, все перечисленные представители семейства гоминидов со временем вымрут. Человек — единственный вид человекообразных, продолжающий расширять свой ареал и размер популяции. 
 
Орангутан 
 
Макаки-резус имеют в среднем 93% гомологии с человеком. Биологи нашли у них много интересных замен в последовательностях ДНК. В том числе, описали отклонения, которые для макак не вредны. Но наличие подобных мутаций у человека вызывают патологии. Это заставило учёных говорить о компенсаторных мутациях: каждое отклонение является вредным и полезным только в контексте определённого генома. 
 
Широконосые обезьяны из Нового Света от общего предка отделились 40 миллионов лет назад. У них есть интересный ген, связанный с рождением близнецов. У обычных обезьян в среднем за раз появляется по одному детёнышу, а у игрунок — всегда двойня. Причём плоды развиваются из разных зигот. Оказывается, это связано с мутацией в определенном гене. У человека сейчас исследуют данный участок ДНК, чтобы понять насколько он предрасполагает к рождению близнецов. 
 
— Также интересно, что зародыши игрунок в утробе матери обмениваются стволовыми клетками! А впоследствии у взрослых особей наблюдается химеризм (наличие генетически разнородных клеток), — добавил Владимир Трифонов.
 
Грызуны 
- Очень важно было расшифровать геном мыши, так как это, без сомнения, любимый всеми биологами объект. Выяснилось: в геномах грызунов случилось то же самое, что у гиббонов, только в 10 раз быстрее — произошла мощная перетасовка генетического материала на уровне хромосом (такого не было ни у рептилий, ни у амфибий, ни у птиц). «Взрыв» был настолько силён, что у некоторых животных утратилась Y-хромосома (именно то,  о чем предупреждала Дженни Грейвс). 
 
Другие млекопитающие
Утконос и ехидна когда-то давно произошли от общего предка. Они обладают рядом удивительных черт. К примеру, они откладывают яйца, но при этом выкармливают своих детёнышей молоком. Кроме того, у них есть яд, похожий на аналогичный у рептилий и содержащийся в роговых шпорах задних лап. Для человека он не смертелен, хоть и повлечет за собой недомогание на несколько дней, а, например, собака вообще может погибнуть. Исследования показали, что яд утконоса — это смесь трёх пептидов, возникших в результате репликации генов. 
 
Утконос 
 
Рыбы
Долгое время считалось, что кистепёрые рыбы вымерли 75 миллионов лет назад. Биологи полагают: они относятся к древнейшей группе рыб, которые дали начало земноводным и первыми из позвоночных вышли на сушу. Но в 1938 году прошлого века были обнаружены современные представители кистепёрых. Морфологически эти рыбы не изменились — у них оказалась очень медленная скорость эволюции генов. 
 
Тихоходки и коловратки
Тихоходки — микроскопические беспозвоночные, близкие к членистоногим. По-другому их ещё называют: маленькие водяные медведи. Они очень устойчивы к изменениям среды. 
 
— Что только с ними не делали учёные: нагревали до 100 градусов, замораживали, облучали радиацией, высушивали так, что в них оставалось только 3% воды, — рассказал биолог. — Кроме того, их специально запускали в космос. Исследователи даже держали тихоходок 10 лет без пищи! И всё равно они выживали... 
 
Оказалось, что одна шестая часть генома тихоходок состоит из «краденого» — когда животное восстанавливается после неблагоприятных периодов, оно берёт части геномов существ, находящихся рядом. Шесть тысяч генов тихоходки имеют инородное происхождение и получены от бактерий, растений и прочих организмов. 
 
Бделлоидные коловратки — многоклеточные существа, похожие на червей. Интересно, что у них уже десятки миллионов лет нет полового размножения. С точки зрения синтетической теории эволюции они должны вымереть. Но коловратки живут за счёт горизонтального переноса генов, как тихоходки, встраивая в себя гены других организмов. Возможно, это заменяет им половой процесс. 
 
Марина Москаленко 
 

Источники

Геномный зоопарк
Наука в Сибири (sbras.info), 11/04/2016

Похожие новости

  • 02/08/2019

    «Летопись, текущая через миллионолетия»

    ​Палеонтология — наука, которая изучает организмы, жившие в прошлые геологические периоды. Останки этих существ являются ключом к множествам тайн этого мира. Исследуя особенности древней флоры и фауны, ученые выясняют, как животный мир отвечает на изменения окружающей среды, и даже способны спрогнозировать влияние тех или иных факторов на современные экосистемы.
    572
  • 12/04/2018

    Капиллярное секвенирование, как оно есть

    ​Слова «ген» и «ДНК» слышали, наверное, все, словосочетание «прочитать геном» — почти все. Но как технически расшифровывается информация, спрятанная в ДНК? Кто владеет «генетической азбукой морзе» и что выполняет роль телеграфного ключа? Чтобы ответить на этот вопрос, журналистка «Науки в Сибири» приняла участие в первой научно-практической школе по капиллярному секвенированию ДНК, организованной Институтом молекулярной и клеточной биологии СО РАН, компаниями «Хеликон» и «Thermo Fisher Scientific».
    1622
  • 22/03/2019

    Новосибирские биологи совместно с иностранными коллегами изучили общего предка коровы и кита

    ​Ученые из Англии, США, Китая и России определили все основные перестройки хромосом и геномов китопарнокопытных во всех круциальных (подверженных эволюционной трансформации участках хромосом) точках их эволюции.
    696
  • 07/08/2018

    Неутомима, как силы природы

    ​Исследование систем репарации ДНК — «ремонта» этой сложной молекулы — поистине масштабная задача, решением которой занимаются передовые исследовательские коллективы и звезды мировой науки. Одна из них — заведующая лабораторией биоорганической химии ферментов Института химической биологии и фундаментальной медицины СО РАН член-корреспондент РАН — Ольга Ивановна Лаврик отмечает юбилей.
    834
  • 28/08/2017

    После Дарвина и Энгельса: формула Колесникова

    ​Научная биография Чарльза Дарвина начиналась негромко. Вернувшись в 1836 году из кругосветного плаванья, он с 1838 года работал секретарем Лондонского геологического общества. И только в 1859-м опубликовал работу «Происхождение видов путём естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь», ставшую основой теории эволюции и самого понятия «дарвинизм».
    1129
  • 04/10/2018

    Ночь научных историй пройдёт в Новосибирске

    За один вечер в новосибирском Академгородке прочтут 15 научно-популярных лекций и дадут ответы на вопросы участников.  Ночь научных историй пройдёт в воскресенье, 7 октября. Каждая лекция будет длиться по 30 минут, далее 15 минут уделят на вопросы-ответы, и 15 минут на перерыв, в течение которого можно будет перейти на другую площадку.
    1468
  • 17/06/2016

    Академик Игорь Жимулёв: под диктовку генов

    В этом году Институту молекулярной и клеточной биологии СО РАН исполняется пять лет. За это время удалось существенно продвинуть уже ведущиеся исследования и организовать перспективные новые. О современном состоянии ИМКБ рассказывает его директор академик Игорь Фёдорович Жимулёв​.
    1932
  • 16/04/2018

    Ученые нашли новый белок-регулятор развития древесины

    Группа ученых из пяти стран, включая Россию, исследовала генетическую регуляцию деления стволовых клеток в стебле растений и обнаружила ранее неизвестный механизм контроля роста древесины фитогормоном ауксином.
    838
  • 04/03/2016

    Ольга Лаврик: политический кризис - не помеха для взаимодействия ученых

    ​За большой вклад в укрепление научного сотрудничества между Россией и Францией  заведующей лабораторией Института химической биологии и фундаментальной медицины СО РАН члену-корреспонденту РАН, профессору Ольге Ивановне Лаврик  было присвоено звание кавалера ордена Академических пальм.
    2490
  • 20/11/2019

    В новосибирском Академгородке пройдет очередной Академический час для школьников

    ​20 ноября 2019 года в 15.00 в Малом зале Дома ученых СО РАН состоится лекция  кандидата биологических наук Сергея Викторовича Кулемзина (ИМКБ СО РАН) "Клеточная иммунотерапия: перспективы и проблемы".
    189