В октябре этого года исполнилось 60 лет с момента появления в Красноярске Института физики СО РАН. Здесь работают люди, которые умеют опережать время…

Из подвала пединститута

История создания института связана с именем Леонида Васильевича Киренского. Его – уроженца Якутии, выпускника МГУ, кандидата наук – приглашали на работу столичные вузы, а повезло Красноярску. В 1940-м он приехал, чтобы работать на физико-математическом факультете пединститута. Но военное время поставило перед ученым свои задачи.

– У Киренского в полуподвальном помещении вуза была своя лаборатория, – рассказывает Никита Волков, доктор физико-математических наук, директор Института физики СО РАН. – Для эвакуированных заводов, прибывающих в Красноярск, они оперативно разрабатывали дефектоскопы, приборы для размагничивания металлов. С помощью приборов можно было определить по магнитным характеристикам металл, сталь определенной марки. Это существенно экономило время – не нужно было проводить дополнительных анализов.

Впоследствии Киренский совершенно справедливо скажет, что «академическая наука Красноярска родилась в подвалах пединститута». Главной темой научного исследования Леонида Васильевича была физика магнитных явлений.

При помощи работников паровозовагоноремонтного завода был изготовлен очень мощный магнит – через несколько лет с предложением создать такой же для их вуза к лаборатории обратится московский университет. Однако продолжать работу на более высоком уровне не представлялось возможным. Число вузов в Красноярске 50-х можно было посчитать на пальцах одной руки – в то время край менее всего ассоциировался с наукой. В своих мечтах Киренский видел на берегах Енисея не только институт физики, но и университет. И хотя его инициативы воспринимались с большим скептицизмом, он не уставал приводить аргументы.

«Немыслимо представить дальнейшее развитие промышленности, освоение природных ресурсов Сибири на базе научных учреждений, находящихся за несколько тысяч километров», – писал он.

– Киренский, конечно, был человеком невероятной силы и энергии, – говорит Никита Волков. – В те годы открыть институт в провинции было невероятно сложно. Но ему это удалось. В постановлении Президиума Академии наук 1956 года было сказано, что необходимо организовать три лаборатории – физики магнитных явлений, оптики и спектроскопии, и биофизики. И вот когда невольно сравниваешь то время и сегодняшнее – нельзя не поразиться темпам. Решение было принято в октябре, а в январе здание «изъяли» у исполкома в центре города и разместили учреждение: наука прежде всего. Через 10 лет вместо трех лабораторий было уже 24.

В скором времени создали лаборатории кристаллофизики, физики магнитных пленок, теоретической физики.

Приобретение импортного оборудования в то время было фактически невозможно. Поэтому институту физики приходилось создавать приборы самостоятельно: открыли экспериментальные механические мастерские, в штате которых работало конструкторское бюро. Так, в отделе биофизики появились установки, предназначенные для выращивания растений в условиях космического полета.

Покорение космоса

Проект по замкнутым биосистемам – БИОС-3 – вообще стал одним из самых резонансных в истории института. Речь шла об экспериментальном комплексе, который моделировал жизнь людей в экстремальных земных и космических условиях. Было выстроено специальное герметичное помещение, где системы по газо- и водообмену и воспроизводству пищи удовлетворяли 80 % от потребностей экипажа. В оранжереях при искусственном освещении выращивались соя, салат, капуста и другие овощи. То, что в таких условиях можно вполне полноценно существовать, доказали 10 экспериментов – самый продолжительный длился 180 дней – именно столько провели ученые в своеобразном бункере. В 90-х годах – уже на базе института биофизики – был создан международный центр замкнутых экологических систем.

– Но 90-е годы были очень сложными, – вспоминает Никита Волков. – Финансирование фактически отсутствовало – непонятно, как мы вообще выжили. Мне приходилось читать лекции еще в трех вузах. Но в начале 2000-х ситуация постепенно менялась. Выделялись средства на оборудование – и сейчас у нас более 30 уникальных установок, которые позволяют, к примеру, получать многослойные магнитные и гибридные наноструктуры, исследовать в них механизмы формирования магнитной структуры и транспортных свойств – последнее направление тесно связано с нанотехнологиями. На базе Красноярского научного центра работает центр коллективного пользования, большая часть оборудования которого находится в нашем институте. У нас немало совместных проектов с АО «ИСС» им. М. Ф. Решетнева, АО «НПП «Радиосвязь» и другими организациями. Таковы запросы времени: хотя мы занимаемся фундаментальной наукой, в институте созданы подразделения, где работают над прикладными исследованиями – теми, которые востребованы наукоемкими предприятиями края и России.

Приобретение импортного оборудования в то время было фактически невозможно. Поэтому институту физики приходилось создавать приборы самостоятельно: открыли экспериментальные механические мастерские, в штате которых работало конструкторское бюро

Чем занимаются физики?

Около полувека назад советский ученый Лев Ландау отметил, что «современная физика способна изучать свойства объектов и явлений, которые находятся далеко за пределами человеческого воображения». В полной мере смысл этой фразы понимаешь, когда узнаешь, над какими именно задачами работают красноярские специалисты в настоящий момент.

Излучение Вселенной

– Некоторые наши исследования вызывают недоумение: к примеру, эксперименты, проводимые при температурах, близких к абсолютному нулю, – при 4 градусах Кельвина (это около 270 градусов по Цельсию ниже нуля), – говорит Никита Волков. – Непонятно: зачем это нужно? Но фундаментальная наука является базой для прикладной. К нам не так давно обратились из АО «Информационные спутниковые системы»: перед ними была поставлена задача сделать радиотелескоп, который будет находиться на орбите и принимать в очень широком диапазоне электромагнитное излучение, приходящее из глубин Вселенной. При этом антенна, экран, вся аппаратура должны работать при температуре около 4 градусов Кельвина: чем ниже температура – тем более слабые сигналы позволит улавливать, регистрировать телескоп. Выполнение таких условий позволит сделать очень чувствительные датчики. Условия эксплуатации аппарата в космосе сложные, и неизвестно, как себя поведут материалы. Есть такое понятие, как линейное изменение размеров при изменении температуры: начинаете что-то нагревать или охлаждать – размеры меняются, а в итоге это может сказаться на конструкции аппаратов. А ведь это надо все просчитать заранее: на Земле вы можете подкрутить, а когда аппарат находится на орбите – корректировать, подстраивать конструкцию телескопа и аппаратуру гораздо сложнее, требуются нетривиальные решения. У радиотелескопа диаметр зеркала антенны около 10 метров, а точность формы зеркала должна быть выдержана с точностью 10 микрон. У нас нет таких ракет, чтобы запустить эту конструкцию в собранном состоянии – а значит, она должна вначале быть в сложенном виде, а в космосе – раскрыться. Задачи стоят серьезные, надеемся, что в том числе и наша помощь позволит справиться с ними специалистам АО «ИСС» в полном объеме.

Транспорт для лекарств

В помощи физиков нуждаются и врачи. Недавнее исследование магнитных свойств наночастиц ферригидрита – внутреннего ядра белкового комплекса из атомов железа – основного внутриклеточного хранилища железа у человека и животных, дает основания предполагать, что их можно будет использовать для… доставки лекарств. Ученые разобрались в механизме изменения размеров частиц и управления их магнитными свойствами. А это значит, что, «прикрепляя» к ним лекарственные средства и воздействуя с помощью магнитного поля, можно направлять их в организме в нужную сторону. Но здесь надо быть осторожным, потому что не совсем еще известны последствия внедрения таких наночастиц внутрь человека.

Еще одни исследования связаны с лечением раковых заболеваний. Если точнее, речь идет о клеточной хирургии. Ученые уже умеют создавать аптамеры из молекул ДНК – делать их таким образом, чтобы они связывались только с определенными клетками, например, с раковыми.

– Мы помогли прикрепить к аптамеру крошечный нанодиск из золота и магнитного материала, – поясняет Никита Волков. – Он совместно с аптамером прикрепляется к клетке, которую надо разрушить. Если включить переменное магнитное поле, диск начинает колебаться и фактически как пила разрезает, разрушает раковую клетку. Впоследствии продукты разрушенной клетки выводятся из организма. А вместо магнитной частицы можно присоединить люминесцентную – ту, которая светится. И вот врач, к примеру, во время операции в онкоцентре, чтобы не пропустить «плохие» клетки, надевает очки – и видит специфическое свечение – там, где аптамер присоединился. Приезжали к нам представители фонда перспективных исследований из Москвы, которые заинтересовались проектом. В институте у нас есть площади, часть необходимого оборудования, профессиональные кадры, тесная интеграция с медиками, что позволяет надеяться в перспективе при поддержке фонда создать лабораторию для его реализации.

Светлана БУРЕНКО

Источники

Большая наука Красноярска зарождалась в институте физики
Наш Красноярский край, 27/10/2016
Выбор академика
Городские новости (gornovosti.ru), 13/03/2017

Похожие новости

  • 04/08/2021

    Первый юбилей: Федеральному исследовательскому центру в Красноярске 5 лет

    ​​​1 августа исполнилось 5 лет с момента создания Федерального исследовательского центра «Красноярский научный центр СО РАН». При создании центра многие институты и подразделения испытывали опасения, связанные с созданием столь крупной организации.
    438
  • 13/10/2016

    Директор Института физики им. Л.В. Киренского Никита Волков: наш институт работает как одна команда

    ​12 октября Институт физики им. Л.В.Киренского СО РАН отметил 60-летний юбилей. Институт создан по инициативе и под руководством Леонида Васильевича Киренского в 1956 году. Как отметил, директор института - доктор физико-математических наук Никита Волков, потенциал, который был заложен в период становления института, сейчас развивается и дополняется современными инновационными направлениями научной деятельности.
    2807
  • 16/02/2021

    День российской науки — 2021

    Традиционно в честь Дня российской науки сибирские институты проводят просветительские мероприятия для студентов, школьников и всех, кто желает узнать чуть больше о большой науке. ​«Этот год был объявлен годом науки и технологий.
    7044
  • 25/01/2021

    Директор ИСЗФ СО РАН Андрей Медведев: Большая наука делается прямо сейчас

    Директору Института солнечно-земной физики СО РАН, члену-корреспонденту РАН Андрею Медведеву исполнилось 60 лет. Но говорить о себе и личных победах юбиляр наотрез отказался, и в этом чувствовалась не просто человеческая скромность, а редкое по нынешним временам достоинство руководителя, для которого дело общее – прежде всего.
    568
  • 22/04/2021

    Учёная рассказала, к чему может привести сброс сточных вод с АЭС «Фукусима» в мировой океан

    13 апреля правительство Японии объявило, что через два года с АЭС «Фукусима» в Тихий океан будет сброшено более 1 миллиона тонн загрязненных сточных вод. Против этого решения выступают местные жители, правительства нескольких соседних стран.
    442
  • 06/07/2021

    День рождения академика Иосифа Гительзона

    Исполнилось 93 года выдающемуся биофизику Иосифу Исаевичу Гительзону. Всемирно известный ученый, член Международной академии астронавтики внес неоценимый вклад в развитие биофизики.И в нашей стране, и за рубежом известны и признаны работы советника РАН, академика Гительзона по биофизическим методам анализа эритроцитарных популяций и регуляции системы крови, управлению биосинтезом микробных популяций и замкнутым экологическим системам жизнеобеспечения человека, биофизическому мониторингу природной среды и методам биолюминесцентного анализа.
    397
  • 19/07/2021

    История озёр говорит: следующий ледниковый период наступит через 6 тысяч лет

    Палеолимнология — это наука, изучающая историю озёр, которую можно восстановить по донным отложениям этих озёр. Денис Рогозин, доктор биологических наук, ведущий научный сотрудник Института биофизики СО РАН, профессор кафедры биологии Института фундаментальной биологии и биотехнологии СФУ, рассказал 7 каналу в программе "Популярная наука" об основных результатах исследований своей группы и о достижениях этой науки.
    369
  • 12/01/2021

    В разработке новой технологии изготовления полимерных трубок участвуют исследователи СибГУ им. М.Ф. Решетнева

    ​Во время рабочего визита в СибГУ им. М.Ф. Решетнева в конце декабря 2020 г. замминистра науки и высшего образования РФ Петр Кучеренко осмотрел выставку научных проектов 2020 года, выполняемых исследователями университета.
    1139
  • 10/10/2018

    Юбилей академика Евгения Александровича Ваганова

    Евгений Александрович Ваганов родился 10 октября 1948 года в Красноярске. В 1971 году окончил физический факультет Красноярского государственного университета по специальности «Биофизика». В 1971-1981 гг.
    1877
  • 06/07/2018

    Академику Иосифу Исаевичу Гительзону - 90 лет!

    ​Иосиф Исаевич Гительзон родился 6 июля 1928 года в Самаре.В 1951 году окончил (заочно) Биологический факультет МГУ, в 1952 году окончил лечебный факультет Красноярского медицинского института — учился одновременно в двух вузах.
    1781